
NDSeq: Runtime Checking for Nondeterministic
Sequential Specifications of Parallel Correctness

Jacob Burnim Tayfun Elmas George Necula Koushik Sen
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley

{jburnim,elmas,necula,ksen}@cs.berkeley.edu

Abstract
We propose to specify the correctness of a program’s parallelism
using a sequential version of the program with controlled nondeter-
minism. Such a nondeterministic sequential specification allows (1)
the correctness of parallel interference to be verified independently
of the program’s functional correctness, and (2) the functional cor-
rectness of a program to be understood and verified on a sequential
version of the program, one with controlled nondeterminism but no
interleaving of parallel threads.

We identify a number of common patterns for writing nondeter-
ministic sequential specifications. We apply these patterns to spec-
ify the parallelism correctness for a variety of parallel Java bench-
marks, even in cases when the functional correctness is far too com-
plex to feasibly specify.

We describe a sound runtime checking technique to validate
that an execution of a parallel program conforms to its nondeter-
ministic sequential specification. The technique uses a novel form
of conflict-serializability checking to identify, for a given inter-
leaved execution of a parallel program, an equivalent nondetermin-
istic sequential execution. Our experiments show a significant re-
duction in the number of false positives versus traditional conflict-
serializability in checking for parallelization bugs.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5 [Software Engineer-
ing]: Testing and Debugging; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about Programs

General Terms Algorithms, Reliability, Verification

1. Introduction
The spread of multicore processors and the end of rapidly growing
single-core performance is increasing the need for programmers to
write parallel software. Yet writing correct parallel programs with
explicit multithreading remains a difficult undertaking. A program-
mer must ensure not only that each part of his or her program com-
putes the correct results in isolation, but also that the uncontrolled
and nondeterministic interleaving of the program’s parallel threads
cannot cause harmful interference, leading to incorrect final results.
This need to simultaneously reason about sequential functional cor-
rectness and the correctness of parallel interleavings poses a great
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challenge both for programmers writing, understanding, and testing
their software and for tools analyzing and verifying such software.

We previously proposed nondeterministic sequential (NDSeq)
specifications [9] as a means to separate the correctness of the par-
allelism of a program from its sequential functional correctness.
The key idea is for a programmer to specify the intended or al-
gorithmic nondeterminism in a program using annotations, and
then the NDSeq specification is a version of the program that is
sequential but includes the annotated nondeterministic behavior.
The only valid parallel behaviors are those allowed by the NDSeq
specification—any additional nondeterminism is an error, due to
unintended interference between interleaved parallel threads, such
as data races or atomicity violations. Thus, a program with such
annotated nondeterminism serves as its own NDSeq specification
for the correctness of its parallelism.

Showing that a parallel program conforms to its NDSeq speci-
fication is a strong statement that the program’s use of parallelism
is correct. The behavior of the program can be understood by con-
sidering only the NDSeq version of the program, as executing the
program in parallel cannot produce any different results. Testing,
debugging, and verification of functional correctness can be per-
formed on this sequential version, with no need to deal with the
uncontrolled interleaving and interference of parallel threads. We
show in this work that NDSeq specifications for parallel applica-
tions can be both written and checked in a simple manner, indepen-
dent of an application’s complex functional correctness.

In this paper, we propose several patterns for writing NDSeq
specifications, and we apply these patterns to specify the paral-
lelism correctness of a number of Java benchmarks. We find that,
with a few simple constructs for specifying intended nondetermin-
istic behavior, adding such specifications to the program text was
straightforward for a variety of applications. This is despite the fact
that, for many of these applications, writing a traditional functional
correctness specification would be extremely difficult. (Imagine,
for example, specifying the correct output of an application to ren-
der a fractal, or to compute a likely phylogenetic tree given genetic
sequence data.) For many of our benchmarks, verifying that the fi-
nal output is correct even for a single known input is challenging.

We propose a novel sound runtime technique for checking that
a structured parallel program conforms to its NDSeq specifica-
tion. Given a parallel execution of such a program, we perform a
conflict-serializability check to verify that the same behavior could
have been produced by the NDSeq version of the program. But first,
our technique combines a dynamic dependence analysis with a pro-
gram’s specified nondeterminism to show that conflicts involving
certain operations in the trace can be soundly ignored when per-
forming the conflict-serializability check. Our experimental results
show that our runtime checking technique significantly reduces the
number of false positives versus traditional conflict-serializability
in checking parallel correctness.
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1: coforeach (i in 1,...,N) {

2: b = lower_bound_cost(i);
3: t = lowest_cost;

4: if (b >= t)

5: continue;
6: c = expensive_compute_cost(i);
7: atomic {
8: t = lowest_cost
9: if (c < t) {
10: lowest_cost = c;
11: best_soln = i;
12: } } }

(a) An example parallel search procedure.

1: nd-foreach (i in 1,...,N) {

2: b = lower_bound_cost(i);
3: t = lowest_cost;

4: if (∗ && (b >= t))
5: continue;
6: c = expensive_compute_cost(i);
7: atomic {
8: t = lowest_cost
9: if (c < t) {
10: lowest_cost = c;
11: best_soln = i;
12: } } }

(b) Nondeterministic sequential
specification for parallel search procedure.

1: coforeach (i in 1,...,N) {

2: b = lower_bound_cost(i);
3: t = lowest_cost;

4: if ( true∗ && (b >= t))
5: continue;
6: c = expensive_compute_cost(i);
7: atomic {
8: t = lowest_cost
9: if (c < t) {
10: lowest_cost = c;
11: best_soln = i;
12: } } }

(c) Parallel search with embedded
nondeterministic sequential specification.

Figure 1. An example parallel search procedure (Figure 1(a)) and a nondeterministic sequential specification (NDSeq) for its parallel
correctness (Figure 1(b)). Since a parallel program and its NDSeq specification look very similar, in practice, we do not write the NDSeq
specification of a parallel program separately, but embed it in the parallel program itself. Figure 1(c) shows the parallel search procedure
with its NDSeq specification embedded in the parallel code. The boxed constructs have different semantics when viewed as parallel code or
as nondeterministic sequential specification.

2. Overview
In this section, we discuss an example program in detail to moti-
vate NDSeq specifications and to informally describe our runtime
checking that a parallel program is parallelized correctly with re-
spect to its NDSeq specification. In Section 3, we then give a formal
definition of parallelization correctness. In Section 4, we illustrate
the generality of these specifications and of our checking approach
on several examples highlighting different parallelization patterns.
Section 5 describes the details of the runtime checking algorithm.
We discuss the experimental results in Section 6 and conclude in
Section 8 by pointing out significance and possible future applica-
tions of NDSeq specifications.

2.1 Motivating Example
Consider the simplified version of a generic branch-and-bound pro-
cedure given in Figure 1(a). This program takes as input a list of N
possible solutions and computes lowest cost, the minimum cost
among the possible solutions, and best soln, the index of a solu-
tion with minimum cost. Function expensive compute cost(i)
computes the cost of solution i. Because this computation is ex-
pensive, the program first computes a lower bound for the cost of
solution i with lower bound cost(i). If this lower bound is no
smaller than the lowest cost found so far (i.e. lowest cost), then
the program skips computing the exact cost for solution i.

The program is a parallel search—the coforeach loop allows
different iterations to examine different potential solutions in par-
allel. Thus, updates to lowest cost and best soln at Lines 8–
11 are enclosed in an atomic block, a synchronization mechanism
that enforces that these lines be executed atomically—that is, all-
at-once and without interruption by any other thread. Functions
expensive compute cost and lower bound cost have no side-
effects and do not read any mutable shared data (i.e., lowest cost
or best soln), and thus require no synchronization.

2.2 Nondeterministic Sequential Specifications
We would like to formalize and specify that the search procedure in
Figure 1(a) is parallelized correctly, and we would like some way
to verify or test this parallel correctness.

If we could specify the full functional correctness of our ex-
ample program—i.e. specify precisely which outputs are correct
for each input—then this specification would clearly imply that the
parallelization of the program was correct. But writing a full func-
tional correctness specification is often a very difficult task. For
our example search procedure, the cost of a possible solution may

be a complex function whose behavior we are unable to specify,
short of reimplementing the entire expensive compute cost in
a specification/assertion language. Even if we could write such a
specification, verifying the full functional correctness could simi-
larly require very complex reasoning about the internals of the cost
and lower bound computations.

We argue that we should seek to specify the correctness of the
parallelism in our example program independently of the program’s
functional correctness. More generally, we aim to decompose our
effort of verifying or checking the correctness of the program into
two parts: (1) addressing the correctness of the parallelism, inde-
pendent of the complex functional correctness and (2) addressing
the functional correctness independent of any reasoning about the
interleaving of parallel threads.

A natural approach to specifying parallel correctness would be
to specify that the program in Figure 1(a) must produce the same
results—i.e. compute the same lowest cost and best soln—
as a version of the program with all parallelism removed. But if
we simply replace the coforeach with a traditional foreach-loop
that iterates i sequentially from 1 to N, we do not get an equivalent
program. Rather, the parallel program has two “freedoms” the
sequential program does not:

ND1 First, the parallel search procedure is free to execute the par-
allel loop iterations in any nondeterministic order. If there are
multiple solutions of minimum cost, then different runs of the
procedure may return different values for best soln, depend-
ing on the order in which the loop iterations are scheduled.
The hypothetical sequential version, on the other hand, would
be deterministic—it would always first consider solution 1, then
solution 2, ..., up to solution N.

ND2 Second, the parallel program is free, in a sense, to not perform
the optimization in Lines 2–5, in which the rest of an iteration is
skipped because the lower bound on the solution cost is larger
than the minimum cost found so far.
Consider two iterations with the same cost and with lower
bounds equal to their costs. In the hypothetical sequential ver-
sion, only one of the iterations would proceed to compute its
cost. In the parallel code in Figure 1(a), however, both itera-
tions may proceed past the check in Line 3 (as lowest cost is
initially∞).

We propose to specify the correctness of the parallelism by com-
paring our example parallel program to a version that is sequential
but contains the nondeterministic behaviors ND1 and ND2. Such
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 e1:  b = lower_bound(i) (=4)!
 e2:  t = lowest_cost (=")!

 e5:  if (true*) {!
 e6:    branch b < t!
       }!

 e14: c = compute_cost(i) (=4)!
 e15: t = lowest_cost (=4)!
 e16: branch c >= t !

 e3:  b = lower_bound(i) (=4)!
 e4:  t = lowest_cost (=") !

 e7:  if (true*) {!
 e8:    branch b < t!
       }!
 e9:  c = compute_cost(i) (=4)!
 e10: t = lowest_cost (=") !
 e11: branch c < t!
 e12: lowest_cost = c (=4)!
 e13: best_soln = i (=2)!

 e17: b = lower_bound(i) (=5)!
 e18: t = lowest_cost (=4)!
 e19: if (true*) {!
 e20:   branch b >= t!
 e21:   continue!
       }!

i=1!

i=2!

i=3!

 e1:  b = lower_bound(i) (=4)!
 e2:  t = lowest_cost (=4)!
 e5:  if (false*) { }!
 e14: c = compute_cost(i) (=4)!
 e15: t = lowest_cost (=4)!
 e16: branch c >= t !

 e3:  b = lower_bound(i) (=4)!
 e4:  t = lowest_cost (=") !
 e7:  if (true*) {!
 e8:    branch b < t!
       }!
 e9:  c = compute_cost(i) (=4)!
 e10: t = lowest_cost (=") !
 e11: branch c < t!
 e12: lowest_cost = c (=4)!
 e13: best_soln = i (=2)!

 e17: b = lower_bound(i) (=5)!
 e18: t = lowest_cost (=4)!
 e19: if (true*) {!
 e20:   branch b >= t!
 e21:   continue!
       }!

i=1!

i=2!

i=3!

  Solutions:!
   lower_bound(1) = 4   cost(1) = 4!
   lower_bound(2) = 4   cost(2) = 4!
   lower_bound(3) = 5   cost(3) = 9!

Figure 2. A parallel execution of three iterations (i=1,2,3) of the
parallel search procedure. The vertical order of events shows the
interleaving. Each assignment shows in parentheses the value being
assigned. The thin dotted arrows denote data dependencies. The
thick solid and thick dashed arrows denote transactional conflicts.
Our analysis proves that the transactional conflict e2 99K e12 can
be safely ignored for the serializability check.

a version of the program is a nondeterministic sequential (ND-
Seq) specification for the program’s parallel correctness. For the
program in Figure 1(a), our NDSeq specification is listed in Fig-
ure 1(b). The NDSeq specification differs from the parallel program
in two ways:

1. The parallel coforeach loop at Line 1 is replaced with a
sequential but nondeterministic nd-foreach loop, which can
run its iterations in any order.

2. The “* &&” is added to the condition at Line 4. This expression
“*” can nondeterministically evaluate to true or false, allow-
ing the sequential specification to run the rest of a loop iteration
even when lower bound cost(i) ≥ lowest cost.

This specification is a completely sequential version of the pro-
gram, executing its loop iterations one-at-a-time with no interleav-
ing of different iterations. It contains only the controlled nondeter-
minism added at the two above points. We say that a parallel pro-
gram conforms to its NDSeq specification when every final result
of the parallel program can also be produced by an execution of the
NDSeq specification. Section 3 elaborates the semantics of NDSeq
specifications and our precise definition of parallelism correctness.

Note the close similarity between the parallel program in Fig-
ure 1(a) and its NDSeq specification in Figure 1(b). Rather than
maintaining our parallel search procedure and its NDSeq specifi-
cations as separate artifacts, we embed the NDSeq specifications
into the parallel code, as shown in Figure 1(c). Here we show in
boxes the coforeach and “true* &&” to indicate that these two
constructs are interpreted differently when we consider Figure 1(c)
as a parallel program or as nondeterministic sequential one. That
is, in the parallel interpretation, coforeach is a standard parallel
for-loop and “true*” always evaluates to true, yielding the exact
behavior of Figure 1(a). But when interpreted as nondeterministic

 e1:  b = lower_bound(i) (=4)!
 e2:  t = lowest_cost (=")!

 e5:  if (true*) {!
 e6:    branch b < t!
       }!

 e14: c = compute_cost(i) (=4)!
 e15: t = lowest_cost (=4)!
 e16: branch c >= t !

 e3:  b = lower_bound(i) (=4)!
 e4:  t = lowest_cost (=") !

 e7:  if (true*) {!
 e8:    branch b < t!
       }!
 e9:  c = compute_cost(i) (=4)!
 e10: t = lowest_cost (=") !
 e11: branch c < t!
 e12: lowest_cost = c (=4)!
 e13: best_soln = i (=2)!

 e17: b = lower_bound(i) (=5)!
 e18: t = lowest_cost (=4)!
 e19: if (true*) {!
 e20:   branch b >= t!
 e21:   continue!
       }!

i=1!

i=2!

i=3!

 e1:  b = lower_bound(i) (=4)!
 e2:  t = lowest_cost (=4)!
 e5:  if (false*) { }!
 e14: c = compute_cost(i) (=4)!
 e15: t = lowest_cost (=4)!
 e16: branch c >= t !

 e3:  b = lower_bound(i) (=4)!
 e4:  t = lowest_cost (=") !
 e7:  if (true*) {!
 e8:    branch b < t!
       }!
 e9:  c = compute_cost(i) (=4)!
 e10: t = lowest_cost (=") !
 e11: branch c < t!
 e12: lowest_cost = c (=4)!
 e13: best_soln = i (=2)!

 e17: b = lower_bound(i) (=5)!
 e18: t = lowest_cost (=4)!
 e19: if (true*) {!
 e20:   branch b >= t!
 e21:   continue!
       }!

i=1!

i=2!

i=3!

  Solutions:!
   lower_bound(1) = 4   cost(1) = 4!
   lower_bound(2) = 4   cost(2) = 4!
   lower_bound(3) = 5   cost(3) = 9!

Figure 3. An execution of the nondeterministic sequential version
of the search procedure. This execution is a serialization of the
parallel execution in Figure 2, producing the same final result. The
thick solid and thick dashed arrows denote transactional conflicts.
Note that the order of conflicts e12 → e15 and e12 → e18 is the
same as in Figure 2, while conflict e12 99K e2, involving irrelevant
event e2, has been flipped.

sequential constructs, coforeach is treated as a nd-foreach and
“true*” can nondeterministically evaluate to true or false, yielding
exactly the behavior of Figure 1(b). With these annotations, the ex-
ample program in Figure 1(c) embeds its own NDSeq specification
for the correctness of its parallelism.

2.3 Runtime Checking of Parallel Correctness
We now give an overview of our proposed algorithm for the runtime
checking that a parallel program conforms to its NDSeq specifica-
tion. We will present the algorithm in full formal detail in Section 5.

Figure 2 illustrates a possible parallel execution of our example
program in Figure 1(c) on N = 3 possible solutions. The three
iterations of the parallel for-loop are shown in separate boxes, with
the i = 1 iteration running in parallel with the i = 2 iteration,
followed by the i = 3 iteration. Although the i = 1 compute a
lower bound and compare it against lowest cost, iteration i =
2 is first to compute the full cost of its solution and to update
lowest cost = 4 and best soln = 2.

We would like to verify that the parallelism in this execution is
correct. That is, the final result produced is also possible in an ex-
ecution of the NDSeq specification. The key will be to show that
parallel loop iterations together are serializable [29]—i.e. there ex-
ist some order such that, if the iterations are executed sequentially
in that order, then the same final result will be produced.

A common restriction of serializability that can be effi-
ciently checked and is thus often used in practice is conflict-
serializability [29]. Given a collection of transactions—in this case,
we think of each parallel loop iteration as a transaction—we form
the conflict graph whose vertices are the transactions and with a
conflict edge from transaction tr to tr′ if tr and tr′ contain con-
flicting operations op and op′ with op happening before op’. (Two
operations from different threads are conflicting if they operate on
the same shared global and at least one of them is a write; in our
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example the conflicts are shown with thick solid or thick dashed
arrows.) It is a well-known result [29] that if there are no cycles in
the conflict graph, then the transactions are serializable.

But conflict-serializability is too strict for our example in Fig-
ure 2. There are three pairs of conflicting operations in this execu-
tion: a read-write conflict between e2 and e12, a write-read conflict
between e12 and e15, and a write-read conflict between e12 and
e18. In particular, the i = 1 and i = 2 transactions are not conflict-
serializable because the i = 2 transaction’s write of lowest cost
at e12 comes after the read of lowest cost at e2 but before the
read at e15.

In this paper, we generalize conflict-serializability by determin-
ing, using a dynamic data dependence analysis, that the only use of
the value read for lowest cost at e2 is in the branch condition at
e6. (The data dependence edges in each thread are shown in Fig-
ure 2 with the thin dashed arrows.) But because of our added nonde-
terminism at Line 4 of our example program, this branch condition
is gated by the nondeterministic condition at e5. Our data depen-
dence analysis tells us that no operation performed inside the if
(true*) opened at e5 has any local or global side-effects—thus,
in the equivalent sequential execution whose existence we are try-
ing to show, we can choose this nondeterministic condition to be
false, in which case the read of lowest cost at e2 will never be
used. This shows that the read-write conflict involving e2 and e12 is
irrelevant, because, once we choose the nondeterministic condition
to be false, the value read at e2 has no effect on the execution.

With only the remaining two relevant conflicts, the conflict
graph has no cycles, and thus we will conclude that the loop itera-
tions are serializable. Figure 3 shows a serial execution whose exis-
tence we have inferred by verifying that there are no conflict cycles.
Note that the two relevant conflicts, e12 → e15 and e12 → e18, are
preserved—they both appear in the serial execution in the same
order. But the irrelevant conflict has been flipped. The write of
lowest cost at e12 now happens before the read at e2, but this
change does not affect the final result of the execution, because the
value read for lowest cost does not affect the control-flow or any
writes to global variables.

Now suppose that the execution in Figure 2 produces an incor-
rect result, i.e., violates a functional specification of the parallel
program. Because we showed above that this execution is equiva-
lent (with respect to the final relevant state) to the computed serial
execution in Figure 3, then the nondeterministic sequential execu-
tion exhibits the same functional bugs as the parallel execution.
Thus, we can simply debug the serial execution without worrying
about thread interleavings.

3. Parallelism Correctness with Nondeterministic
Sequential Specifications

In this section, we formally define our programming model, our
nondeterministic sequential (NDSeq) specifications, and our notion
of parallel correctness. As discussed in Section 2.2, we embed the
NDSeq specifications for a parallel program in the program itself.
We achieve this both by overloading parallel language constructs
and by adding a couple of new constructs. The syntax for the
language is shown in Figure 4.

To simplify the presentation we consider a programP to consist
of a single procedure. We omit discussion of multiple procedures
and object-oriented concepts, and we assume that each global vari-
able refers to a distinct location on the shared heap and that each
local variable refers to a distinct location on the stack of a thread.
Handling these details in our dynamic analysis is straightforward.

For each program P , we define two sets of executions
ParExecs(P) and NdSeqExecs(P), described below. The correct-
ness of a parallel program is then given by relating ParExecs(P)
and NdSeqExecs(P).

g ∈ Global l ∈ Local Var = Global ∪ Local

x ∈ Var ::= l | g
b ::= l | true∗ | false∗

s ∈ Stmt ::= l = l op l | l = constant | l = l | g = l | l = g
| s; s | if(b) s | if(l) s else s
| while(l) s | for (l in l) s
| continue | break | return | · · ·
| atomic s
| coforeach (l in l) s | cobegin s; ...; s

Figure 4. Selected statements of our language. The constructs with
a different semantics in the parallel program and the sequential
specification are shown in boxes.

Parallel executions: ParExecs(P) contains the parallel execu-
tions of P where each cobegin and coforeach statement creates
implicitly new threads to execute its body. cobegin s1; ...; sn is
evaluated by executing each of s1, ..., sn on a separate, newly cre-
ated thread. coforeach is evaluated by executing each iteration
of the loop on a separate, newly created thread. Following struc-
tured fork/join parallelism, a parallel execution of a cobegin and
coforeach statement terminates only after all the threads created on
behalf of the statement terminate. Assignments, the evaluation of
conditionals, and entire atomic statements, are executed as atomic
steps without interruption by other threads. In the parallel seman-
tics, true∗ and false∗ always evaluate to true and false, respectively.

Sequential executions: NdSeqExecs(P) contains the (nondeter-
ministic) sequential executions of P where all statements are
evaluated sequentially by a single thread. Under the sequential
semantics, the statements other than if with ∗, cobegin, and
coforeach are interpreted in the standard way. Each evaluation
of cobegin s1; ...; sn is equivalent to running a nondeterministic
permutation of statements s1, ..., sn, where each si∈[1..n] executes
sequentially. A statement coforeach is evaluated similarly to its
deterministic version (for) except that the elements of the collec-
tion being iterated over are processed in a nondeterministic order.
This, in essence, abstracts the semantics of the collection to an un-
ordered set. Keyword atomic has no effect in the sequential case,
so atomic s is simply equivalent to s. Finally, true∗ or false∗ yield
nondeterministic boolean values each time they are evaluated.

Parallelism Correctness. We describe executions of P using a
standard notion of small-step operational semantics extended with
nondeterministic evaluation of cobegin and coforeach, and nonde-
terministic branches (true∗ and false∗).

The parallelism correctness for P means that every final state
reachable by a parallel execution of the program from a given initial
state is also reachable by an NDSeq execution from the same initial
state. Therefore, parallel executions have no unintended nondeter-
minism caused by thread interleavings: either the nondeterminism
is prevented using synchronization, or it is expressed by the nonde-
terministic control flow in the sequential specification.

While defining parallel correctness, we distinguish a set of
global variables as focus variables, which contain the final results
of a program. Then, we reason about the equivalence of executions
on the final values of the focus variables.

Definition 1 (Parallelism correctness) A program P conforms to
its NDSeq specification with respect to a set Focus ⊆ Global
iff for every parallel execution E ∈ ParExecs(P), there exists a
nondeterministic sequential execution E′∈NdSeqExecs(P), such
that the initial states of E and E′ are the same and the final states
agree on the values of all variables in Focus .
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4. Nondeterministic Specification Patterns
The use of nondeterministic sequential specifications is an attrac-
tive way to specify parallel correctness, yet it is not immediately
clear where to introduce the nondeterministic constructs into the
specification (1) without breaking the functional correctness while
(2) capturing the nondeterminism due to thread interleavings.

Figure 5 shows the pseudo-code for three common patterns
that we encountered repeatedly in our experiments. Each of these
patterns considers parallel worker tasks where there is a potential
for conflicting accesses to shared data. In contrast, applications
where shared data is distributed strictly disjointly between tasks do
not require use of if(true∗) specifications. Next, we discuss these
patterns in detail.

4.1 Optimistic Concurrent Computation
This pattern is a manually implemented analogue of software trans-
actional memory (STM) [37]. A parallel task performs its work
optimistically in order to reduce the synchronization with other
threads. It reads the shared data (shared) required for its work to
a local variable (local) and performs the computation (do work)
without further access to shared data. Before committing the re-
sult of the computation back to the shared space, it checks if
the input it read previously has been modified by another thread
(is conflict). In that case it retries the work. This pattern is used
when the time spent for the local computation dominates the time
for checking conflict and committing, and the contention on the
same regions of shared memory is low.

Such fail-retry behaviors are not normally conflict-serializable
when another thread updates shared during do work. The up-
date conflicts with the read of shared before and after do work.
However, in those situations we expect is conflict to return
true and the commit to be skipped. The true∗ && allows the
NDSeq program to nondeterministically skip the conflict check-
ing and the commit. This captures that (1) it is acceptable from a
partial-correctness point of view to skip the commit nondeterminis-
tically even without checking is conflict, and (2) if the commit
is skipped then the read of shared data before and after do work are
irrelevant and can be ignored for conflict serializability purposes.

Examples: This pattern is used in non-blocking data structures,
e.g., stacks and queues, to implement optimistic concurrent access
to the data structure without locks. These data structures imple-
ment the atomic block in the pseudo code using a compare-and-
swap (CAS) operation [18]. We have also encountered this pattern
when parallelizing a mesh refinement program from the Lonestar
benchmark suite (see Section 6). Our parallelization instantiates the
pattern in Figure 5 as follows:

// Processing cavity of a node N:
while (true) {
local_cavity = read cavity of N from shared mesh;
refined_cavity = refine the cavity locally;
atomic {

if ( true∗ && mesh still contains all nodes in local_cavity) {

replace old cavity in mesh with refined_cavity;
break;

} } }

Appendix A gives more examples of NDSeq specifications for
non-blocking implementations following the same pattern.

4.2 Redundant Computation Optimization
In contrast with optimistic computation where each parallel task
must complete its work, in the redundant computation pattern, each
thread may choose to skip its work when it detects that the work
is no longer necessary (is work redundant). Here synchronizing
the check for redundancy and the actual work may not be practical
when the latter is a long running operation.

Optimistic Concurrent Computation Pattern

while (true) {
local = shared;
local’ = do_work(local);
atomic {

if ( true∗ && !is_conflict(local,shared)) {
shared = local’; // commit result
break;

} } }

Redundant Computation Optimization Pattern

if ( true∗ && is_work_redundant(shared)) {
// work is unnecessary; skip the work

} else {
do_work(); // accesses shared

}

Irrelevant Computation Pattern
do_work(local, shared);

if ( true∗ ) {
do_irrelevant_work();

}

Figure 5. Common concurrency patterns and use of true∗ and
false∗ to express the nondeterminism.

Threads operating under this pattern are not conflict serializable
if another thread updates the shared state while our thread calls
is work redundant and finds that it returns false. Those updates
conflict with the shared read before calling is work redundant
and while executing do work.

The true∗ && allows the NDSeq program to nondeterministi-
cally skip the call to is work redundant and do the work anyway.
This expresses that (1) it is acceptable from a partial-correctness
point of view to skip the redundancy check and to do the actual
work, and also that (2) if we skip the redundancy check, then the
initial read of shared state is not relevant to the computation and
can be ignored for conflict-serializability purposes.

Examples: This pattern is often used when a solution space is ex-
amined by multiple threads to improve convergence to an optimal
solution. Our running example in Section 2.1 follows this pattern:
Lines 2–5 in Figure 1 test the lower bound of the current solution
to decide if the computation at Line 6 can produce a better solution.
The phylogeny benchmark from the Parallel Java Library follows
a similar bound check to prune the search space for optimal phy-
logenetic trees. Programs using caches to avoid multiple computa-
tions of a function for the same input also use this pattern.

4.3 Irrelevant Computation
This pattern generalizes tasks that perform some computation
(shown in the if(true∗) branch) that does not affect the rest of the
execution path and does not produce a result that flows into shared
state that is relevant to core functional correctness. One can ignore
the irrelevant part of the program when reasoning about the pro-
gram in the sequential semantics, since either (1) it does not affect
the focus state, or (2) it is only necessary for the parallel executions
of the program.

Examples: A prevalent instance of case (1) is when updating
a statistic counter to profile the procedures of a program. For
example, in the following we use if(true∗) to mark the increment
of a statistic counter as an irrelevant operation. Updates to counter
do not affect the final result (with respect to focus variables) of the
program. However, without using the if(true∗), conflicts due to
counter will not be ignored by our analysis. By surrounding the
if statement with if(true∗), the programmer indicates that the if
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branch is not relevant for the final result, and conflicts due to the
accesses to counter when executing the branch should not affect
the parallel correctness of the program. In fact, one can easily prove
statically that, given counter is not a focus variable, skipping the
conditional at all is safe for the functionality.

do_work(shared, local); // access shared variables exclusively

if ( true∗ ) {
if (counter < MAX_INT) {
counter = counter + 1;

}
}

Moreover, rebalancing a tree, garbage collection and com-
paction, maintaining a cache, and load balancing are operations that
are performed to improve the performance of a parallel program,
but –when implemented correctly– do not affect the core function-
ality of the program and thus are considered irrelevant.

An instance of (2) is when using a locking library to ensure
atomicity of the relevant computation. In contrast with the statistics
counters, locks are essential for the correctness of the parallelism,
though the locking-state is often irrelevant for reasoning about the
core functionality of the program in a sequential run.

5. Runtime Checking of Parallel Correctness
Among the various possible techniques for checking parallelization
correctness, we describe here a runtime checking algorithm. We
use dynamic data-flow analysis to determine parts of the executions
that are not relevant to the final valuation of the focus variables. At
the same time the analysis determines appropriate assignments of
boolean values to the if(true∗) nondeterministic branches in the
NDSeq execution, in order to eliminate as many serialization con-
flicts as possible. Therefore, data flow analysis and NDSeq spec-
ifications play key roles in improving the applicability of conflict
serializability for reasoning about parallelism in real programs. In
the rest of this section, we describe the details of the checking al-
gorithm and we sketch its correctness.

In order to simplify the presentation of the runtime checking
algorithm for parallelism correctness we make the following as-
sumptions about the parallel program being checked:

A1. Branch predicates are either true∗ or a local variable.

A2. The body of an if(true∗) does not contain unstructured control
flow (e.g., continue, break, return), and there is no else clause.

These assumptions can be established using standard program
refactoring. For example, Lines 4–5 from Figure 1(c) can be trans-
lated to:
bool cond = false;

if( true∗ ){ l = (b >= t); if(l){ cond = true; } }
if(cond) continue;

where cond and l are new local variables.
Our checking algorithm operates on an execution trace de-

scribed as a sequence of execution events. Let τ denote a trace and
e an event. For each event e we have the following information:

• Type(e) is the type of the event, defined as follows:

T ::= x = x′ | branch(l) | branch(true∗)

The “x = x′” event type corresponds to the assignment and bi-
nary operation statements in our language (shown in Figure 4;
recall that metavariable x stands for both locals and globals).
We use a simple assignment in our formal description to sim-
plify the presentation; unary and binary operators do not pose
notable difficulties. We assume that an event can read a global,
or write a global, but not both. The “branch(l)” event marks

the execution of a branch operation when the boolean condi-
tion denoted by local l evaluates to true. The case of a branch
when the negation of a local is true is similar. Finally, the
“branch(true∗)” marks the execution of an if(true∗) branch,
which in the parallel execution is always taken. Our algorithm
does not require specific events to mark the start and end of
procedures or atomic blocks.
We write e : T when e has type T .
• Thread(e) denotes the thread that generates the event e . Re-

call that new threads are created when executing cobegin and
coforeach statements.
• Guard(e) denotes the event of type branch(true∗) that corre-

sponds to the most recent invocation of the innermost if(true∗)
that encloses the statement generating e . For events outside any
if(true∗) this value is nil .
For example, in the trace shown in Figure 2, Guard(e6) = e5,
Guard(e8) = e7, Guard(e20) = Guard(e21) = e19, and
Guard(e) = nil for all other events e .

The checking algorithm operates in two stages, shown in Fig-
ure 6. The first stage computes a subset of the events in the trace that
are relevant (Section 5.1), and the second stage determines whether
the relevant part of the trace is conflict serializable (Section 5.2).

5.1 Selecting Relevant Events
A standard conflict-serializability algorithm [29] considers all
events in a trace. We observed that in many concurrent programs
it is common for partial work to be discarded when a conflict is
later detected. In such cases, some of the computations based on
previously read values of shared variables are discarded and are
not relevant to the rest of the execution. If we can ignore such ir-
relevant reads of shared variables we can prove that more paths are
conflict serializable. Similarly, we can ignore writes that do not af-
fect a relevant control flow and do not flow into the final state of
the focus variables. Our experiments show that this makes a differ-
ence for most benchmarks where traditional conflict serializability
reports false alarms.

Informally, an assignment event is relevant if it targets a location
that is eventually used in the computation of a final value of a
focus variable, or in the computation of a deterministic branch. To
track this relevance aspect we compute a dynamic data-dependence
relation between events. For trace τ , we define the dependence
relation 99K as follows:

D1. (Intra-Thread Data Dependence). For each local variable
read ej : x = l or branch ej : branch(l), we add a depen-
dence (ei 99K ej) on the last ei : l = x′ that comes before ej in
τ . This dependence represents an actual data flow through lo-
cal l from ei to ej in the current trace. Both of these events are
in the same thread (since they operate on the same local) and
their order and dependence will be the same in any serialization
of the trace. These dependence edges are shown as thin dashed
arrows in Figure 2.

D2. (Inter-Thread Dependence). For each global variable read ej :
l = g we add dependencies (ei 99K ej) on events ei : g = l′ as
follows. From each thread we pick the last write to g that comes
before ej in τ , and the first write to g that comes after ej in τ .
This conservative dependence is necessary because the relative
order of reads and writes to the global from different threads
may change in a serialization of the trace. Section 5.3 explains
the importance of this detail for correctness. In the example
shown in Figure 2, we have such dependence edges from e12
to all events that read lowest cost: e2, e4, e10, e18.

Let 99K∗ denote the transitive closure of 99K.
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Algorithm ComputeRelevant(τ,Focus)
// Collecting relevant events for the serializability check
// Add all writes to focus globals

1 Relevant = {e : g = l ∈ τ | g ∈ Focus
∧ e is last write to g in Thread (e)}

// Start with all top-level deterministic branches
2 Relevant = Relevant ∪ {e : branch(l) ∈ τ |Guard(e) = nil}
3 Compute data dependency relation 99K from τ
4 repeat

// Add events that some relevant events data-depend on
5 Relevant = Relevant ∪ {e ∈ τ | ∃e′ ∈ Relevant . e 99K∗ e′}

// Add nondeterministic branches containing relevant events
6 Relevant = Relevant ∪

{e : branch(true∗) ∈ τ | ∃e′ ∈ Relevant . Guard(e′) = e}
// Add deterministic branches nested inside relevant if (true∗)’s

7 Relevant = Relevant ∪
{e : branch(l) ∈ τ | Guard(e) ∈ Relevant}

8 until Relevant does not change
9 return Relevant

Algorithm CheckCycle(τ,Focus)
// Check serializability of trace

10 Relevant = ComputeRelevant(τ,Focus)
11 Compute conflict relation ; between threads
12 if exists a cycle t; t′ ;∗ t
13 Report unserializable thread t
14 else
15 Declare the execution serializable
16 end if

Figure 6. The algorithm for checking parallelism correctness.

Figure 6 lists the algorithm ComputeRelevant to compute the
set of relevant events. We seed the set of relevant events with
all the events that assign to the global focus variables (Line 1)
and the deterministic branches outside any nondeterministic blocks
(Line 2). In Line 5 we add the assignment events on which existing
relevant events have data dependence on.

The crucial factor that allows us to find a significant number of
irrelevant events is that we can choose to skip the events (assign-
ments and branches) corresponding to nondeterministic if(true∗)
blocks, as long as those blocks are irrelevant in the trace. We extend
the relevance notion from assignment events to branches as follows.
A branch(true∗) event is relevant if and only if it corresponds to the
execution of an if(true∗) block with at least one relevant assign-
ment event (Line 6). For this step we use the previously introduced
Guard function to relate events inside if(true∗) blocks with the
corresponding branch(true∗) event. We also say that a branch(l)
event is relevant if it represents control flow that must be preserved
(it is not nested inside an irrelevant if(true∗) block). This is en-
forced in Lines 2 and 7. The computation in Lines 5–7 must be
repeated to a fixed point since the additional relevant deterministic
branches added in Line 7 can lead to new relevant assignments due
to data dependencies.

For example, in the trace in Figure 2, relevant events are e9−13

from thread with i = 2, e14−16 from thread with i = 1, and e17−21

from thread with i = 3. Since the nondeterministic branch events
e5 and e7 are irrelevant (no events in the rest of the trace data-
depend on their bodies), the branch events e6 and e8 are not marked
as relevant. Thus, events e1−2 from thread with i = 1 and e3−4

from thread with i = 2 have no data-dependents in Relevant and
they remain as irrelevant.

5.2 Checking Serializability of Transactions
The final stage in our runtime checking algorithm is a conflict
serializability check implemented as a cycle detection problem
similar to [12, 16]. The added element here is that we ignore the

conflicts induced by irrelevant events, and we have the flexibility to
alter the nondeterministic control flow in order to remove conflicts.

First we define the conflict relation between individual events.

Definition 2 (Conflicting events) Two events e, e ′ ∈ τ are con-
flicting (written e ; e ′) iff (a) e occurs before e ′ in τ , and (b) both
events operate on the same shared global variable, and at least one
of them represents a write, and (c) both events are Relevant in
trace τ .

Next we lift the conflict relation from events to threads. When
comparing two threads for conflicts we need to consider their
events and all the events of their descendant threads. Thus, for a
thread t we define its transaction as the set of events Trans (t) that
includes all the events of t and of the descendant threads of t.

Definition 3 (Conflicting threads) Two threads t, t′ are conflict-
ing in trace τ (written t ; t′) iff (a) their transaction sets are
disjoint (i.e., one is not a descendant of the other), and (b) there ex-
ist two events e ∈ Trans (t) and e ′ ∈ Trans (t′) that are conflicting
(e ; e ′). The relation t ;∗ t′ is the transitive and reflexive clo-
sure of the thread conflict relation.

The main runtime checking algorithm for parallelism correct-
ness is shown in Lines 10–16 in Figure 6.

For the example trace shown in Figure 2 the event e2 is not
relevant, which allows the algorithm CheckCycle to ignore the
conflict between e2 and e12 (shown with thick dashed arrow in
Figure 2). Without the dependence analysis we could not show that
the trace is serializable.

5.3 Algorithm Correctness
The correctness of our runtime checking algorithm can be argued
by showing that when the CheckCycle algorithm succeeds, the
input trace τ ∈ ParExecs(P) can be transformed incrementally
into a trace τ ′ ∈ NdSeqExecs(P) such that the final states in
both traces agree on the values of the focus variables. Each in-
cremental transformation preserves the validity of the trace and
the final condition on focus variables. Some of the intermediate
traces in this process will belong to the larger space of nonde-
terministic parallel executions NdParExecs(P), which allow both
interleavings (as in ParExecs(P)) and nondeterministic branches
(as in NdSeqExecs(P)). For these executions the nondeterministic
branches true∗ and false∗ are resolved at runtime nondeterministi-
cally to true or false.

The first trace transformation that we perform is to eliminate the
events corresponding to if(true∗) blocks that were found irrelevant
by ComputeRelevant. The second transformation is to commute
adjacent events from different threads that are not in conflict, either
because they do not operate on a shared global, or because one of
them is irrelevant. The correctness of these steps, i.e., they preserve
the validity of the trace and the final values of focus variables, is
established by Lemma 1 and Lemma 2.

The rest of the correctness algorithm builds on a standard result
from database theory: a trace is conflict serializable if it can be
transformed into an equivalent serial trace by commuting adjacent,
non-conflicting operations of different threads. This is possible if
and only if the transactional conflict graph is acyclic [29].

Lemma 1 (Skip irrelevant nondeterministic blocks)
If τ ∈ ParExecs(P), let τ ′ be the subtrace of τ ob-
tained by eliminating all events e such that Guard(e) /∈
ComputeRelevant(τ,Focus). Then τ ′ is a valid trace in
NdParExecs(P), meaning that τ ′ reflects the correct control
flow of the program P with the corresponding irrelevant true∗
resolved to false, and τ ′ agrees with τ on the final values of Focus
variables. Furthermore, ComputeRelevant(τ ′,Focus) returns
the same answer as for trace τ .

7



The proof of this lemma relies first on the assumption (A2)
stated earlier that the body of any if(true∗) has only normal exits
and no else clause. This means that by removing all the events in
any such body results in a trace where control flows properly to
the statement after the skipped if(true∗). All assignment events
eliminated in this step are irrelevant since their guard is irrelevant
(Line 6 in Figure 6). Therefore subsequent control flow and the
final value of focus variables are preserved. The set of relevant
events does not change through this transformation because its
computation does not depend on irrelevant events.

Lemma 2 (Commutativity of irrelevant events) Consider a
trace τ ∈ NdParExecs(P) and two adjacent events e1 and e2 in
τ , such that the events are from different threads, they operate
on a shared global g, at least one is a write event, and at least
one is irrelevant (not in ComputeRelevant(τ,Focus)). Then the
trace obtained by commuting e1 and e2 is still a valid trace in
NdParExecs(P) and it agrees with τ on the final value of Focus
variables.

Proof Sketch: Considering the types of events we can have in the
trace and the conditions of the Lemma, we have three possible
cases:

• Read-after-write: e1 : g = l and e2 : l′ = g. If e2 were relevant
then e1 would also be relevant (Line 5 in the algorithm, with
data-dependence rule D2). Thus it must be that e2 is irrelevant,
hence the value of l′ does not affect the subsequent control flow
or final values of Focus variables. Therefore we can commute
the events and the trace remains in NdParExecs(P). The rele-
vant events computation does not change, since l 6= l′ (different
threads), and the relative order of relevant reads and writes to
global does not change.
• Write-after-read: e1 : l = g and e2 : g = l′. If e1 were relevant

then e2 would also be relevant (Line 5 in the algorithm, with
data-dependence rule D2; this is a crucial part of the correctness
argument that depends on the conservative form of the data-
dependence rule D2). Thus, e1 is irrelevant, and the rest of this
case follows the same arguments as in the read-after-write case.
• Write-after-write: e1 : g = l and e2 : g = l′. It must be

that there is no nearby relevant read of the global g in the
trace, or else both events would be relevant (again due to data-
dependence rule D2). This means that it does not matter what
we write to g. The relevant set does not change after the swap
because we do not change the dependence relation 99K. It is for
this reason that we require the dependence rule D2 to consider
the nearest write to a global from each thread.

2

With these results it is straightforward to prove our main cor-
rectness result given below using standard conflict-serializability
results using our relaxed notion of conflicts, as proved adequate in
Lemma 2.

Theorem 1 (Correctness) Let τ be the trace generated by a
parallel execution of E ∈ ParExecs(P) of a program P . If
CheckCycle(τ,Focus) does not report any unserializable trans-
action, then there exists a nondeterministic sequential execution
E′∈NdSeqExecs(P), such that the initial states of E and E′ are
the same and the final states agree on the value of all variables in
Focus .

The theorem implies that if we explore, using a model checker,
all parallel executions of the program and show that all these exe-
cutions are serializable, then we can conclude that the parallel pro-
gram conforms to its NDSeq specification.

6. Experimental Evaluation
In this section, we describe our efforts to experimentally evaluate
our approach to specifying and checking parallel correctness using
NDSeq specifications. We aim to evaluate two claims:

(1) That it is feasible to write NDSeq specifications for the parallel
correctness of real Java benchmarks,

(2) Our runtime checking algorithm produces significantly fewer
false positives than a traditional conflict-serializability analysis
in checking parallel correctness of these benchmarks.

To evaluate these claims, we wrote NDSeq specifications for the
parallel correctness of a number of Java benchmarks and then used
our runtime checking technique on these specifications.

6.1 Benchmarks
We evaluate our technique on a number of benchmarks that have
been used in previous research [8, 12, 16] on parallel correct-
ness tools. Note that we focus on parallel applications, which use
multithreading for performance but fundamentally are performing
a single computation that can be understood sequentially. We do
not consider concurrent benchmarks, such as reactive systems and
stream-based systems, because it is not clear whether or not such
programs can be understood sequentially.

The names, sizes, and brief descriptions of the benchmarks we
used are listed in Table 1. Several benchmarks are from the Java
Grande Forum (JGF) benchmark suite [38], the Parallel Java (PJ)
Library [20]. We report on all benchmarks that we looked at except
tsp [46], for which we have not yet found an easy way to write
the NDSeq specification (see Section 6.5). We also applied our
tool to two large benchmarks in the DaCapo benchmark suite [4].
Benchmark meshrefine is a sequential application from the Lon-
estar benchmark suite [22] that we have parallelized (by convert-
ing the application’s main loop into a parallel loop). Benchmarks
stack [39] and queue are non-blocking concurrent data structures.
For each data structure, we construct a test harness that performs
several insertions and removals in parallel (i.e., in a cobegin). The
queue is similar to the Michael and Scott queue [26], but eagerly
updates the queue’s tail with a 4-word compare-and-swap. This
change simplified significantly the NDSeq specification.

6.2 Implementation
Although these benchmarks are written in a structured parallel
style, Java does not provide structured parallelism constructs such
as coforeach or cobegin. Thus, we must annotate in these bench-
marks the regions of code corresponding to the bodies of parallel
loops and cobegin’s. Typically, these regions are the bodies of run
methods of subclasses of java.lang.Thread. Similarly, some of
these benchmarks use barrier synchronization. As barriers have no
sequential equivalent, we treat these programs as if they used a se-
ries of parallel coforeach constructs, ending one parallel loop and
beginning another at each barrier. (This is a standard transforma-
tion [45] for such code.) We similarly treat each PJ benchmark,
which employ sequential loops inside each of a fixed number of
worker threads, as instead consisting of structured parallel loops.

In order to write NDSeq specifications, we implemented a sim-
ple library for annotating in Java programs the beginning and end
of the bodies of if(∗), coforeach, and cobegin constructs, as well
as which locations (fields, array elements, etc.) are focus variables.
Columns 4, 5, and 6 of Table 1 list, for each benchmark, the number
of such annotated parallel constructs, annotated if(∗), and state-
ments added to mark focus variables.

We implemented our checking technique in a prototype tool
for Java, which uses bytecode instrumentation via Soot [42]. In
addition to the details described in Section 5, for Java it is necessary
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Benchmark Benchmark Description
Approximate
Lines of Code

(App + Library)

# of
Parallel

Constructs

Size of Spec Size of Trace Distinct Serializability Warnings

# of
if(*)

# of focus
stmts

All
Events

Irrelevant
Events

Conflict-
Serializability

Our
Technique

JGF

sor successive over-relaxation 300 1 0 1 1,600k 112 0 0
matmult sparse matrix-vector multiplication 700 1 0 1 962k 8k 0 0
series coefficients of Fourier series 800 1 0 5 11k 140 0 0
crypt encryption and decryption 1100 2 0 3 504k 236 0 0
moldyn molecular dynamics simulation 1300 4 0 1 4,131k 79k 0 0
lufact LU factorization 1500 1 0 1 1,778k 6k 0 0
raytracer ray tracing 1900 1 0 1 6,170k 44k 1 1 (bug)
montecarlo Monte Carlo derivative pricing 3600 1 0 1 1,897k 534k 2 0

PJ

pi3 Monte Carlo approximation of π 150 + 15k 1 0 1 1,062k 141 0 0
keysearch3 cryptographic key cracking 200 + 15k 2 0 4 2,059k 91k 0 0
mandelbrot fractal (Mandelbrot set) rendering 250 + 15k 1 0 6 1,707k 954 0 0
phylogeny branch-and-bound search 4400 + 15k 2 3 8 470k 5k 6 6 (bug)

DaCapo sunflow image rendering using ray tracing 24k 4 4 3 24,250k 2,264k 28 3 (no bugs)
xalan XML to HTML transformation 302k 1 3 4 16,540k 887k 6 2 (no bugs)

stack Treiber non-blocking stack [39] 40 1 2 8 1,744 536 5 0
queue non-blocking queue [26] 60 1 2 8 846 229 9 0
meshrefine Delaunay mesh refinement 1000 1 2 50 747k 302k 30 0

Table 1. Experimental results. Note that the six warnings reported for phylogeny are all true violations caused by a single bug.

to handle language features such as objects, exceptions, casts, etc.
Any Java bytecode instruction that can throw an exception—e.g.,
a field dereference, an array look-up, a cast, or a division—must
be treated as an implicit branch instruction. That is, changing the
values flowing into such an instruction can change the control-flow
by causing or preventing an exception from being thrown.

Limitations. While our implementation supports many intrica-
cies of the Java language, it has a couple of limitations:

First, our implementation tracks neither the shared reads and
writes nor the flow of data dependence through uninstrumented
native code. Thus, we may report an execution as having correct
parallelism despite unserializable conflicts in calls to native code.

Second, our tool does not instrument all of the Java standard li-
braries. This may cause our tool to miss data dependencies carried
through the data structures in these libraries, as well as shared reads
and writes inside such data structures. To address this limitation, for
certain shared data structure objects we introduced fake shared vari-
ables and inserted reads or writes of those variables whenever their
corresponding objects were accessed. This allows us to conserva-
tively approximate the conflicts and data dependencies for certain
critical standard Java data structures.

6.3 Results: Feasibility of Writing Specifications
Writing an NDSeq specification for each benchmark program con-
sisted of two steps: (1) adding code to mark which parts of the pro-
gram’s memory were in focus—i.e. storage locations whose values
are relevant in the final program state, and (2) adding if(∗) con-
structs to specify intended or expected nondeterminism.

For all of our benchmarks besides tsp, it was possible to write
an NDSeq specification for the benchmark’s parallel correctness.
The “Size of Spec” columns of Table 1 lists the number of if(∗)
constructs added to each benchmark and the number of statements
added to mark storage locations as in focus. These numbers show
that, overall, the size of the specification written for each bench-
mark was reasonably small. We further found adding nondetermin-
ism via if(∗) to be fairly straightforward, as all necessary nonde-
terminism fell under one of the NDSeq specification patterns dis-
cussed in Section 4. Identifying which storage locations were rel-
evant to the final program result was similarly straightforward. As
an example, we show in Appendix A.2 the complete NDSeq speci-
fication for the stack benchmark.

Though further work is needed to evaluate the general applica-
bility of NDSeq specifications for parallel correctness, we believe it
is promising preliminary evidence that we were able to easily write
such specifications for a range of parallel applications.

6.4 Results: Runtime Checking
For each benchmark, we generated five parallel executions on
a single test input using a simple form of race-directed parallel
fuzzing [36]. On each such execution, we checked our NDSeq spec-
ification both using our technique and using a traditional, strict
conflict-serializability analysis [16].

We report in Column “Size of Trace; All Events” of Table 1
the size of a representative execution trace of each benchmark.
The size is the number of reads and writes of shared variables
and the number of branches executed during the run. Note that
most of our benchmarks generate a few hundred thousand or a few
million events during a typical execution on a small test input. For
a dynamic analysis, this is a more relevant measure of benchmark
size than static lines of code. Column “Size of Trace; Irrelevant
Events” reports the number of these events found to be irrelevant
by our algorithm ComputeRelevant in Figure 6. The fraction of
events found to be irrelevant, and therefore not considered during
our algorithm’s serializability checking, range from 0-40%.

The “Distinct Serializability Warnings” columns of Table 1 re-
port the number of serializability warnings produced by a tradi-
tional conflict-serializability check and by our technique. Note that,
in a trace of a benchmark, a conflict involving a few particular lines
of code may generate many cycles among the dynamic events of the
trace. We report only the number of distinct cycles corresponding
to different sets of lines of code.

Both techniques find the two real parallelism bugs—a data
race in raytracer due to the use of the wrong lock to protect
a shared checksum, and an atomicity violation in the phylogeny
branch-and-bound search involving the global list of min-cost so-
lutions found. (The six warnings for phylogeny are all real vio-
lations caused by this single bug.) Because of these bugs, neither
raytracer nor phylogeny is equivalent to its NDSeq spec.

A traditional conflict-serializability analysis also gives false
warnings for six benchmarks—incidents where there are cycles of
conflicting reads and writes, but the parallel code is still equiva-
lent to its NDSeq specification. In four of these cases, our algo-
rithm leverages its dynamic dependence analysis and specified non-
determinism and focus variables to verify that these conflicts in-
volve reads and writes irrelevant to the final program result. In this
way, our algorithm eliminates all false warnings for benchmarks
montecarlo, stack, queue, and meshrefine.

For benchmarks sunflow and xalan, our checking algorithm
eliminates 25 and 4 false warnings, respectively, produced by strict
conflict-serializability checking, but generates 3 of the same false
warnings for sunflow and 2 for xalan. We discuss in greater detail
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below these false warnings that our analysis was and was not able
to eliminate.

Note that previous work on atomicity checking, such as [16],
typically evaluate on such benchmarks by checking whether or
not each individual method is atomic. Thus, a single cycle of
conflicting reads and writes may lead to multiple warnings, as
every method containing the cycle is reported to be non-atomic.
(Conversely, multiple cycles may be reported as a single warning
if they all occur inside a single method.) Our numbers of reported
violations are not directly comparable, as we are interested only in
whether each execution of an entire parallel construct is serializable
and thus equivalent to an execution of its sequential counterpart.

montecarlo Benchmark. Each parallel loop iteration of the
montecarlo benchmark contains several conflicting reads and
writes on shared static fields. (The reads and writes occur inside
the constructor of a temporary object created in each iteration.)
To a naı̈ve, traditional conflict-serializability analysis, these reads
and writes make it appear that no equivalent serial execution ex-
ists. However, it turns out that the values written to and read from
these static fields are never used—they affect neither the control
flow nor the final program result. Thus, our analysis determines
that these events are irrelevant and need not be considered during
serializability checking. The remaining, relevant events are serial-
izable, and thus our technique reports that the observed executions
of montecarlo conform to its nondeterministic sequential specifi-
cation.

stack, queue, and meshrefine Benchmarks. Benchmark
meshrefine employs the Optimistic Concurrent Computation pat-
tern described in Section 4. Each parallel iteration reads from the
shared triangular mesh that is being refined, and then optimistically
computes a re-triangulation of a region of the mesh. It then atom-
ically checks that no conflicting modifications have been made to
the mesh during its computation and either: (1) commits its changes
to the mesh if there are no conflicts, or (2) discards its optimistic
computation and tries again. When conflicting modifications oc-
cur, an execution of meshrefine is clearly not strictly conflict-
serializable. However, when we specify with an if(∗) that the se-
quential execution is free to nondeterministically discard its opti-
mistic computation and retry, even when there are no conflicts, our
analysis can verify that conflicts involving these shared reads and
optimistic computation are not relevant when the optimistic work
is discarded. And the remaining relevant events are serializable, so
our analysis reports no false warnings in this case.

The stack and queue benchmarks are also instances of the Op-
timistic Concurrent Computation pattern, where shared reads are
performed, but these reads are only relevant when a later compare-
and-swap operation succeeds. Conflicts leading to failing CAS op-
erations in these benchmarks lead to false positives for a strict
conflict-serializability analysis, but our technique determines that
these conflicts are not relevant to the final program result.

sunflow and xalan Benchmarks. Benchmarks sunflow and
xalan cause false alarms due to the following lazy initialization
pattern:

1: if ( true∗ && flag == true) {
2: // skip initialization
3: } else {
4: atomic {
5: if (flag == false) {
6: initialize shared object
7: flag = true;
} } }

In the above pattern, each thread checks if some shared object
has been initialized and, if not, initializes the object itself. The flag

variable, which is initially false, indicates whether the object has
been initialized.

This pattern has two potential sources of false alarms:

1. One thread may read that flag is false at Line 1, and then
another thread may initialize the object and set flag to true,
so that the first thread then reads that flag is true at Line 5.
This is a violation of conflict-serializability.
This is an instance of the Redundant Computation Optimization
Pattern described in Section 4, as a thread can always choose
to skip the check at Line 1, since flag will be checked again
at Line 5. By annotating the first check with true∗ &&, our
analysis ignores irrelevant conflicts involving threads reading
that flag is false at Line 1 and eliminates this kind of false
warning.

2. When one thread initializes the shared object and sets flag to
true, and then other threads read both flag and the shared
object, our analysis sees conflict edges from the initializing
thread to the other threads. These can lead to conflict cycles if
the initializing thread later performs any relevant reads of data
written by other threads. Our technique will report these cycles
as violations.
But such reports are false warnings, because it does not matter
which thread performs this kind of lazy initialization, and it is
possible to serialize such executions despite outgoing conflicts
from the initialization code. Future work is needed to handle
this pattern in our NDSeq specifications and dynamic checking.

6.5 Caveats
While we could easily write the specifications for our benchmarks,
NDSeq specifications must be used with care. First, one must be
careful to not introduce so much nondeterminism that the result-
ing NDSeq program exhibits undesired behavior. A catalog of
specification patterns, along the lines of those presented in Sec-
tion 4 can guide programmers to use this technique without break-
ing functional correctness. Second, we note that when introduc-
ing if(true∗) one can easily introduce nontermination (as shown in
several examples in this paper). This is safe as long as we consider
only the partial correctness properties of the NDSeq specification.

Our runtime algorithm reduces the number of false positives
compared to a standard notion of conflict serializability. However,
it can still give false positives for the following reasons:

• We do not apply semantic-level analyses, such as commutativ-
ity analysis [33]. However, there are parallel patterns that rely
on commutativity, in which it is necessary to ignore low-level
conflicts that are part of larger, commutative operations (such
as reductions). Two commutative updates on a focus variable
(e.g., addition) can have conflicts yet still be serializable when
the updates are considered at a semantic level. We are exploring
ways to address this limitation.
• We only search for NDSeq executions for which the control-

flow path outside if(true∗) branches is the same as in the
parallel execution. Thus, we might miss an equivalent NDSeq
path, and falsely report lack of conflict-serializability. One can
eliminate this source of imprecision by exploring executions of
the program with different control flows.

tsp Benchmark. For reasons stemming from the limitations
given above, we have not found an easy way to write and check
the NDSeq specification for the tsp [46] benchmark. Figure 7(a)
gives the original form of the main search routine. Each thread is
implemented as a loop (Lines 2–10): At each iteration it obtains a
work w from the shared queue Q (Line 4), searches the region repre-
sented by w (Line 6) and updates the shared variable MinTourLen
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1: cobegin <1,...,N> {

2: while (!isEmpty(Q)) {
3: atomic {
4: w = get_work(Q);
5: }
6: s = recursive_solve(w);
7: atomic {
8: if (s < MinTourLen)
9: MinTourLen = s;
10:} } }

(a) Original search routine

1: cowhile (!isEmpty(Q)) {

2: atomic {
3: w = get_work(Q);
4: }
5: s = recursive_solve(w);
6: atomic {
7: if (s < MinTourLen)
8: MinTourLen = s;
9:} } }

(b) Rewritten form of the search

Figure 7. TSP benchmark.

(Lines 8–9). In order to show that each thread as implemented in
Figure 7(a) is serializable, one needs to prove that executions of
get work are commutative. This requires a nontrivial reasoning
because procedure get work may split the work items in Q and
submit new work items to Q, which creates a dependency from a
thread processing a work item created by a call to get work by
another thread. We found that Figure 7(a) has the equivalent func-
tionality to the rewritten form of the search in Figure 7(b), where
each thread performs only one iteration of the while loop. In this
case, one can show that each iteration at Lines 2–9 in Figure 7(b)
is serializable, as procedure recursive solve is a thread-local
operation and the (atomic) update of MinTourLen at Lines 7–8 is
commutative.

7. Related Work
Several generic parallel correctness criteria have been studied for
shared memory parallel programs that separates the concerns about
functionality and parallelism at different granularities of execution.
These criteria include data-race freedom [27, 46], atomicity [14],
linearizability [19]. All these criteria provides the separation be-
tween parallel and functional correctness partially, as the restric-
tion on thread interleavings is limited, for example, to atomic block
boundaries. NDSeq develops this idea up to a complete separation
between parallelism and functionality so that the programmer can
reason about the intended functionality by examining a sequential
or nearly sequential program. NDSeq specification differs from de-
terminism specification and checking [5, 8, 34] in that NDSeq not
only allows to specify that some part of the final state is indepen-
dent of the thread schedule, but also allows to specify that the part
of the final state that depends on thread schedule is equivalent to
the state arising due to nondeterministic choices in the NDSeq.

We formulate the checking of parallelism correctness to a gen-
eral notion of atomicity. Various static [10, 14, 40, 41] and dy-
namic [7, 12, 16, 25, 44, 48, 49] techniques for checking atom-
icity and linearizability has been investigated in the literature. The
main challenge in these techniques is to reason about conflicting
accesses that are simultaneously enabled but ineffective on the rest
of the execution. In the Purity work [15] Flanagan et al. provide a
static analysis to rule out spurious warnings due to such conflicts
by abstracting these operations to no-op’s. Elmas et al. general-
ize this idea in a static proof system called QED [11]. They pro-
gressively transform a parallel program to an equivalent sequential
program with respect to functional specifications expressed using
assertions. They abstract reads and writes of shared variables; how-
ever, they need to consider functional specification when applying
the abstractions to guarantee that the abstraction does not introduce
functional bug in the new program. In addition, both Purity and
QED are based on Lipton’s reduction theory [24], whereas we ap-
ply the idea to relax the checking of conflict serializability [2] for
nondeterministic specifications.

Atomic-set serializability [43] is an weaker notion of atomicity,
which groups storage locations into atomic sets and requires, for
each atomic set, all atomic blocks are conflict-serializable with
respect to the locations in the set. Dynamic techniques for detecting
violations of atomic-set serializability has been proposed [17, 23].

Recently, several platforms and languages have been developed
to guarantee that parallel programs give deterministic results, i.e.
there is no bug due to parallelization. Kendo [28] enforces a de-
terministic interleaving of parallel tasks by controlling synchro-
nization operations (particularly locks) in the meantime targeting
to achieve a load-balancing of parallel tasks close to the nonde-
terministic case. In Deterministic Parallel Java (DPJ) [5] Bocchino
et al. allow programmers to write parallel programs that are deter-
ministic by design (ensured at compile time). DPJ also allows pro-
grammers to explicitly mark parallel constructs with nondetermin-
istic sequential semantics and compose them safely with other de-
terministic constructs without breaking the determinism-by-default
guarantees [6]. On the other hand the Galois project [21], Praun
et al. [47], and Prabhu et al. [30] aim to exploit the opportuni-
ties in parallelizing irregular, inherently sequential programs. The
sequential model ensured by these systems allows nondeterminis-
tic ordering of parallel loops and pipelines. Praun et al. [47] pro-
pose the programming model IPOT that allows programmers to ex-
plicitly mark portions of the program for speculative multithreaded
and transactional execution. Its tryasync construct resembles our
cobegin construct. IPOT allows internal nondeterminism in that
intermediate states may differ from the corresponding sequential
execution, but guarantees external determinism where the final state
only depends on the inputs, not the thread interleavings. Their run-
time technique aims to preserve, rather than checking, sequential
semantics. Prabhu et al. [30] propose speculative composition and
iteration as programming constructs to parallelize parts of the pro-
gram with explicit dependencies. They guarantee the obedience to
sequential semantics by running a sequential version of the pro-
gram that verifies the speculated values of each parallel part. Saltz
et al. [35], and Rauchwerger et al. [32] present runtime checks for
parallelizing executions of loops. Their runtime techniques com-
plement static transformations by tracking at runtime data depen-
dencies across parallel loop iterations similarly to our runtime al-
gorithm does to identify true conflicts between threads.

8. Conclusion
We proposed the use of nondeterministic sequential specifications
to separate functional correctness from parallelism correctness of
parallel programs. Our proposal has several advantages.

First, NDSeq specifications are lightweight. Unlike tradi-
tional mechanisms for functional specification, e.g., invariants and
pre/post-conditions, NDSeq specifications do not require one to
learn a complex logic or language. The original parallel program
along with a few if(true∗) serves as the specification and can be
used alone to detect various parallelism-related bugs.

Second, once we verify parallelism correctness, proving the
functional partial correctness of the parallel program amounts
to checking the functional correctness of the NDSeq program.
Threads being absent, this can be done using well-developed tech-
niques for verifying sequential programs. Note that verification
of sequential programs (even with nondeterminism) is much sim-
pler than verification of parallel programs. For example, model
checking of Boolean multithreaded programs is undecidable [31],
whereas model checking of Boolean nondeterministic sequential
programs is decidable [13]. The latter fact has been exploited by
several well-known model checkers for nondeterministic sequen-
tial programs [1, 3]. Similarly, NDSeq specifications also simplify
the reasoning about other concurrency-related properties such as
determinism and linearizability.
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Third, NDSeq specifications can simplify debugging of func-
tional correctness bugs. When investigating a parallel execution
that exhibits a bug, the programmer can be presented with the
equivalent, hence similarly buggy, NDSeq execution. This allows
the programmer to analyze the bug by examining a sequential be-
havior of the program, which is much easier to debug than its par-
allel counterpart.

We proposed a runtime checking algorithm for parallelism cor-
rectness. Our algorithm is based on a combination of simple dy-
namic dataflow analysis and conflict serializability checking. The
NDSeq specification is the key factor that improves the precision of
conflict serializability by indicating the conflicts that can be safely
be ignored by the analysis. We believe that a similar verification can
be done statically; such an extension remains a future work. A key
aspect of our checking algorithm (unlike static proof systems [11]
and type systems [14]) is that it does not need to refer to functional
invariants which often complicates the verification process.
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class Stack :
class Node {int value; Node next;}
Node TOP; int TOP_version;

void push(int x) {
Node local_top, new_top;
int local_version;
boolean done = false;

new_top = new Node();
new_top.value = x;
while (!done) {
atomic {
local_top = TOP;
local_version = TOP_version;

}
new_top.next = local_top;

if ( true∗ ) {
if (CAS2(TOP, TOP_version,

local_top, local_version,
new_top, local_version+1))

done = true;
} } }

int pop() {
Node local_top, new_top;
int local_version;
boolean done = false;
int value = EMPTY;

while (!done) {
atomic {
local_top = TOP;
local_version = TOP_version;

}

if ( true∗ ) {
if (local_top == null) {
done = true;

} else {
new_top = local_top.next;
if (CAS2(TOP, TOP_version,

local_top, local_version,
new_top, local_version+1)) {

done = true;
value = local_top.value;

} } } }
return value; }

void harness() {
Stack stack = new Stack();

coforeach (i = 1 .. 30) {

// make a call to stack
if(randomBoolean()) {
stack.push(randomInt());

} else {
int t = stack.pop();

mark_focus(t) ;

} }

// traverse the stack and mark
// the final contents relevant

mark_focus(stack.TOP) ;

Node node = stack.TOP;
while(node != null) {

mark_focus(node.next) ;

mark_focus(node.value) ;

node = node.next;
} }

Figure 8. A non-blocking stack implementation with its nondeterministic sequential specification embedded.
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A. NDSeq Specification Examples
A.1 Non-blocking Concurrent Reduction
Consider the simple parallel program in Figure 9. The program
consists of a parallel for-loop, denoted coforeach—each iteration
of this loop attempts to perform a computation (Line 6) based on the
shared variable x, which is initially 0. In particular, each iteration
uses an atomic compare-and-swap (CAS) operation to update the
shared variable x. If multiple iterations try to concurrently update
x, some of these CAS’s will fail and those parallel loop iterations
will recompute their updates to x and then will try again.

The NDSeq specification of the program, which is embedded
in the parallel program in Figure 9, indicates two nondeterministic
aspects. First, the box around the coforeach construct in Line 1
specifies that the loop iterations can run in any permutation of the
set 1,...,N. This part of the specification captures the intended
nondeterministic behavior of the parallel program: x can be updated
by threads in an arbitrary order due to nondeterministic scheduling
of threads. Second, the if(true∗) annotation in Line 4 specifies that

1: coforeach (i in 1,...,N) {

2: bool done = false;
3: while (!done) {

4: if ( true∗ ) {
5: int prev = x;
6: int curr = i*prev + i;
7: bool c = CAS(x,prev,curr);
8: if (c) {
9: done = true;
10: }
11: } } }

12: mark_focus(x) ;

Figure 9. Simple parallel program to perform the reduction in
Line 6 for the integers {1,. . . ,N}, in some arbitrary order.
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the iteration body may be skipped nondeterministically, at least
from a partial correctness point of view; this is acceptable, since
the while loop in this program fragment is already prepared to deal
with the case when the effects of an iteration are ignored following
a failed CAS statement.

The mark focus annotation in Line 12 indicates that x is
the only focus variable. That is, the functional correctness of the
program depends only on the final value of x after all the threads
created by coforeach terminate.

A.2 Non-blocking Concurrent Stack
In Figure 8, we give the Java-like code for the NDSeq specification
of our non-blocking stack benchmark. The stack is represented as
a null-terminating, singly-linked list of Node objects. The head of
the list is pointed by the TOP field of the stack. In order avoid the
ABA problem, we use a version number (TOP version), which is
increased whenever TOP is updated.

The push and pop methods implement the Optimistic Concur-
rent Computation pattern in Section 4 using a loop that iterates until
the operation succeeds. Each method first reads the TOP of the stack

without any synchronization and then uses an atomic CAS2 (dou-
ble compare-and-swap) operation to check for conflicts by compar-
ing TOP and TOP version with local top and local version.
If TOP=local top and TOP version=local version then CAS2
commits the operation by writing new top to TOP and increment-
ing TOP version and returns true. Otherwise, CAS2 returns false
and the operation retries.

In the specification, an if(true∗) statement is placed around
the critical CAS2 in push, and around the check whether or not
local top is null in pop. These if(true∗)’s indicate that the
sequential version of the program is free to nondeterministically
retry as if there had been a conflict. This added nondeterminism
enables our dynamic analysis to mark as irrelevant the reads of TOP
and TOP version by loop iterations in which the CAS2 fails.

The harness method creates a number of threads, each of
which calls push with a random input or calls pop. In the code, we
mark the focus variables using mark focus . The focus variables
are: (1) the values popped by the harness threads (marked after each
call to pop), and (2) the last contents of the stack (marked at the end
of the harness).
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