
P A R A L L E L C O M P U T I N G L A B O R A T O R Y

EECS
Electrical Engineering and

Computer Sciences

NDSeq: Runtime Checking for
Nondeterministic Sequential Specs

of Parallel Correctness

Jacob Burnim, Tayfun Elmas,
George Necula, Koushik Sen

University of California, Berkeley

Goal: Decompose effort in addressing
parallelism and functional correctness

2

Parallel
program

Functional
specification

ϕ
Satisfies?

Parallel
program

Functional
specification

ϕ

Nondeterministic
sequential

specification

Goal: Decompose effort in addressing
parallelism and functional correctness

3

Functional Correctness.
Reason about

sequentially, without
thread interleavings.

Parallelism Correctness.
Handle independently of

complex & sequential
functional properties.

Parallel
program

Functional
specification

ϕ

Nondeterministic
sequential

specification

Nondeterministic
sequential

specification

Goal: Decompose effort in addressing
parallelism and functional correctness

4

Parallel
program

Nondeterministic
sequential

specification

1.  NDSeq: easy-to-write spec for parallelism.

2.  Runtime checking of NDSeq specifications.

Functional
specification

ϕ

Outline
! Overview

! Motivating Example
! Nondeterministic Sequential (NDSeq)

Specifications for Parallel Correctness

! Runtime Checking of NDSeq Specifications

! Experimental Results

! Conclusion

5

for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)
 if cost < min_cost:
 min_cost = cost
 min_item = i

Motivating Example

6

! Goal: Find minimum-cost item in list.

for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)
 if cost < min_cost:
 min_cost = cost
 min_item = i

Input: N items.

Output: min_cost and
min_item.

Motivating Example

7

! Goal: Find minimum-cost item in list.

for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)
 if cost < min_cost:
 min_cost = cost
 min_item = i`

for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)
 if cost < min_cost:
 min_cost = cost
 min_item = i`

for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)
 if cost < min_cost:
 min_cost = cost
 min_item = i

Computes cost of
item i. Expensive.

Computes cheap lower
bound on cost of i.

Prune when i cannot
have minimum-cost.

for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)
 if cost < min_cost:
 min_cost = cost
 min_item = i

Motivating Example

8

! Goal: Find minimum-cost item in list.

How do we
parallelize this

code?

Parallel Motivating Example

9

! Goal: Find min-cost item in list, in parallel.

, parallel-for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)
 synchronized (lock):
 if cost < min_cost:
 min_cost = cost
 min_item = i

Updates to best are
protected by lock.

Loop iterations can be
run in parallel.

Parallel Motivating Example

9

! Goal: Find min-cost item in list, in parallel.
, parallel-for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)
 synchronized (lock):
 if cost < min_cost:
 min_cost = cost
 min_item = i

Updates to best are
protected by lock.

Loop iterations can be
run in parallel. Claim: Parallelization

is clearly correct.

How can we specify
this parallel

correctness?

Specifying Parallel Correctness

10

!  Idea: Use sequential program as spec.

parallel-for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)
 synchronized (lock):
 if cost < min_cost:
 min_cost = cost
 min_item = i

for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)

 if cost < min_cost:
 min_cost = cost
 min_item = i

Satisfies?

No.

Parallel-Sequential Equivalence?

11

bound: 5
cost: 5

(1) bound: 5
cost: 5

(2) items:
min_item: –!
min_cost: ∞

prune?(1)

parallel-for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)
 synchronized (lock):
 if cost < min_cost:
 min_cost = cost
 min_item = i

Parallel-Sequential Equivalence?

11

bound: 5
cost: 5

(1) bound: 5
cost: 5

(2) items:
min_item: –!
min_cost: ∞

prune?(1)

parallel-for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)
 synchronized (lock):
 if cost < min_cost:
 min_cost = cost
 min_item = i

prune?(2)

Parallel-Sequential Equivalence?

11

bound: 5
cost: 5

(1) bound: 5
cost: 5

(2) items:

prune?(1)

update(2)

parallel-for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)
 synchronized (lock):
 if cost < min_cost:
 min_cost = cost
 min_item = i

prune?(2)

min_item: (2)!
min_cost: 5

Parallel-Sequential Equivalence?

11

bound: 5
cost: 5

(1) bound: 5
cost: 5

(2) items:

prune?(1)

update(1)

update(2)

min_item: (2)!
min_cost: 5

parallel-for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)
 synchronized (lock):
 if cost < min_cost:
 min_cost = cost
 min_item = i

prune?(2)

Parallel-Sequential Equivalence?

11

bound: 5
cost: 5

(1) bound: 5
cost: 5

(2) items:

prune?(1)

update(1)

update(2)

min_item: (2)!
min_cost: 5

parallel-for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)
 synchronized (lock):
 if cost < min_cost:
 min_cost = cost
 min_item = i

prune?(2)

prune?(1)

update(1)

prune?(2)

But sequential program:
•  Returns min_item = (1).
•  Prunes (2).

Specifying Parallel Correctness

12

! Parallel program has freedom to:

parallel-for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)
 synchronized (lock):
 if cost < min_cost:
 min_cost = cost
 min_item = i

Avoid pruning by
scheduling check
before updates.

Process items in a
nondeterministic order.

Specifying Parallel Correctness

12

! Parallel program has freedom to:

parallel-for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)
 synchronized (lock):
 if cost < min_cost:
 min_cost = cost
 min_item = i

Avoid pruning by
scheduling check
before updates.

Process items in a
nondeterministic order.

Must give sequential spec this freedom.

Nondeterministic Sequential Spec

13

parallel-for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)
 synchronized (lock):
 if cost < min_cost:
 min_cost = cost
 min_item = i

nd-for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if * && b >= c:
 continue
 cost = compute_cost(i)

 if cost < min_cost:
 min_cost = cost
 min_item = i

Can choose
not to prune item.

Runs iterations in any order.

NDSeq Specification Patterns

14

! Found three recipes for adding *’s:
1.  Optimistic Concurrent Computation

(optimistic work with conflict detection)
2.  Redundant Computation Optimization

(e.g., pruning in branch-and-bound)
3.  Irrelevant Computation

(e.g., updating a performance counter)

! With these recipes, fairly simple to write
NDSeq specifications for our benchmarks.

Nondeterministic Sequential Spec

15

! Parallelism correct if no more nondeterminism:

parallel-for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)
 synchronized (lock):
 if cost < min_cost:
 min_cost = cost
 min_item = i

nd-for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if * && b >= c:
 continue
 cost = compute_cost(i)

 if cost < min_cost:
 min_cost = cost
 min_item = i

Satisfies?

Yes.

Outline
! Overview

! Motivating Example

! Nondeterministic Sequential (NDSeq)
Specifications for Parallel Correctness

! Runtime Checking of NDSeq Specs
! Experimental Results

! Conclusion

16

Testing Parallelism Correctness

17

Initial  
State s0"

Final  
State s1"

Given: an execution of parallel program
(e.g. of parallel loop iterations)

Initial  
State s0"

Final  
State s1"

Is there an equivalent execution of NDSeq spec?

Idea:
Serializability?

Conflict-Serializability is Too Strict

18

c = min_cost
b = lower_bound(i)
if * [true]:
 if b >= c: // false

cost = compute_cost(i)
if cost < min_cost:
 // false

 …
min_cost = cost
 …

Thread 1:

Thread 2:
c = min_cost
b = lower_bound(i)
if * [true]:
 if b >= c: // false

cost = compute_cost(i)
if cost < min_cost:
 // false

 …
min_cost = cost
 …

Classic Theorem:
Cycle of conflict edges =>

Not serializable!

Relaxing Conflict-Serializability

19

c = min_cost
b = lower_bound(i)
if * [true]:
 if b >= c: // false

cost = compute_cost(i)
if cost < min_cost:
 // false

 …

min_cost = cost
 …

Thread 1:

Thread 2:

Can we set * to false?

Check: Does body have
any side effects on execution?

Relaxing Conflict-Serializability

19

c = min_cost
b = lower_bound(i)
if * [true]:
 if b >= c: // false

cost = compute_cost(i)
if cost < min_cost:
 // false

 …
min_cost = cost
 …

Thread 1:

Thread 2:
c = min_cost
b = lower_bound(i)
if * [false]:
 if b >= c: // false

cost = compute_cost(i)
if cost < min_cost:
 // false

Can we set * to false?

Check: Does body have
any side effects on execution?

Relaxing Conflict-Serializability

20

c = min_cost
b = lower_bound(i)
if * [false]:
 if b >= c: // false

cost = compute_cost(i)
if cost < min_cost:
 // false

 …
min_cost = cost
 …

Local c is no longer used,
so conflicting read of

min_cost is irrelevant.
Thread 1:

Thread 2:

Theorem. No relevant
conflict cycles => exists
equivalent NDSeq run!

Relaxing Conflict-Serializability

21

c = min_cost
b = lower_bound(i)
if * [false]:

cost = compute_cost(i)
if cost < min_cost:
 // false

 …
min_cost = cost
 …

Read different value for
min_cost, but overall
behavior is the same.

Theorem. No relevant
conflict cycles => exists
equivalent NDSeq run!

Iteration 1:

Iteration 2:

22

Traditional conflict serializability:

+ flipping * + dynamic data dependence:

Thread 2

Thread 1 (a)

Thread 1 (b)

Thread 2

Thread 1 (a)

Thread 1 (b)

Not serializable!
Cycle of conflicts.

Thread 2

Thread 1 (a)

Thread 1 (b)

Thread 2

Thread 1 (a’)

Thread 1 (b)

Thread 2

Thread 1 (a’)

Thread 1 (b)

Flip *

Outline
! Overview

! Motivating Example

! Nondeterministic Sequential (NDSeq)
Specifications for Parallel Correctness

! Runtime Checking of NDSeq Specifications

! Experimental Results
! Conclusion

23

Experimental Evaluation

24

! Wrote and tested NDSeq specifications for:
!  Java Grande, Parallel Java, Lonestar, DaCapo,

and nonblocking data structure.
!  Size: 40 to 300K lines of code.
!  Tested 5 parallel executions / benchmark.

! Two claims:
1.  Easy to write NDSeq specifications.
2.  Our technique serializes significantly more

executions than traditional methods.

25

Benchmark Lines of
Code

of Parallel
Constructs # of if(*)

stack 40 1 2
queue 60 1 2
meshrefine 1K 1 2
sunflow 24K 4 4
xalan 302K 1 3
keysearch3 200 2 0
mandelbrot 250 1 0
phylogeny 4.4K 2 3
series 800 1 0
crypt 1.1K 2 0
raytracer 1.9K 1 0
montecarlo 3.6K 1 0

JG
F

P
J

D
aC

ap
o

26

Benchmark Size of
Trace

Serializability Warnings

stack 1,744 5 (false) 0
queue 846 9 (false) 0
meshrefine 747K 30 (false) 0
sunflow 24,250K 28 (false) 3 (false)
xalan 16,540K 6 (false) 2 (false)
keysearch3 2,059K 2 (false) 0
mandelbrot 1,707K 1 (false) 0
phylogeny 470K 6 6
series 11K 0 0
crypt 504K 0 0
raytracer 6,170K 1 1
montecarlo 1,897K 2 (false) 0

JG
F

P
J

D
aC

ap
o

Traditional Our Technique

27

Benchmark Size of
Trace

Serializability Warnings

stack 1,744 5 (false) 0
queue 846 9 (false) 0
meshrefine 747K 30 (false) 0
sunflow 24,250K 28 (false) 3 (false)
xalan 16,540K 6 (false) 2 (false)
keysearch3 2,059K 2 (false) 0
mandelbrot 1,707K 1 (false) 0
phylogeny 470K 6 6
series 11K 0 0
crypt 504K 0 0
raytracer 6,170K 1 1
montecarlo 1,897K 2 (false) 0

JG
F

P
J

D
aC

ap
o

Traditional Our Technique

Limitations

28

!  Implementation
!  Dynamic data dependence ==> high overhead.
!  Instrumentation may miss some reads/writes.

! Commutativity:

increment(x);

…

increment(y);
…

…
increment(x);
…
increment(y);
…

Outline
! Overview

! Motivating Example

! Nondeterministic Sequential (NDSeq)
Specifications for Parallel Correctness

! Runtime Checking of NDSeq Specifications

! Experimental Results

! Conclusion

29

Summary

30

! Separate parallel & functional correctness.
!  Lightweight NDSeq specs for parallelism.
!  Sequentially verify functional correctness.

! Runtime checking of NDSeq specs.
!  Generalize conflict-serializability using if(*) and

dynamic data dependence.

! Future/Current Work:
!  Automatically inferring NDSeq specifications.
!  Static verification of parallel correctness.
!  Debugging on NDSeq.

P A R A L L E L C O M P U T I N G L A B O R A T O R Y

EECS
Electrical Engineering and

Computer Sciences

Questions?

Many thanks to Intel, Microsoft, other Parlab sponsors,
and NSF for supporting this work.

