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Performance-Directed Testing 
 Automated tested has focused on 

correctness bugs. 

 Goal: Apply to software performance. 
  Find performance bottlenecks. 
  Security: Algorithmic denial-of-service. 

 Today: Computational complexity testing. 
  How slow is an operation in the worst case? 
  Does a function meet its algorithmic  

 complexity spec? 



Performance-Directed Testing 

 Example: Performance bug in Jar
  Reported by Sun on May 15, 2009 
  update method O(N2) instead of O(N) 
  O(N) look-up on every file, rather than O(1) 
  wasted 75% of run-time building rt.jar



Goal of WISE 
 Worst-case Inputs from Symbolic Execution 

Input 

InsertionSort() 

Input Size: N 

// insertion sort
for(i = 0 .. N-1)
for(j = i .. 1)
  if (A[j] < A[j-1])
    swap(A[j], A[j-1])
  else
    break

Size: N 
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 Worst-case Inputs from Symbolic Execution 

Input Output 

InsertionSort() 

Input Size: N 

1:  1 

2:  2 1 

3:  3 2 1 

N:  N … 2 1 

// insertion sort
for(i = 0 .. N-1)
for(j = i .. 1)
  if (A[j] < A[j-1])
    swap(A[j], A[j-1])
  else
    break

WISE 

… 

Size: N 
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Overview of WISE 

 Uses symbolic test generation to explore 
possible program executions. 
  Widely used in automated software testing. 

(DART, CUTE, SAGE, EXE, KLEE, JPF, …) 

 Key Idea: 
 Learn from executions on small inputs. 
  In Quicksort, pivot should be smaller than 

all elements to which it’s compared. 
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Symbolic Test Generation 
 Goal: A test input for every program path. 

f(int x, int y)
{

  z = 2*x;

  if (z == x)

    if (x > y + 8)

      print(“Hi”)

}

x > y + 8 

2*y == x 

T F 

Computation Tree 

T F 



Symbolic Test Generation 
 Depth-first search of computation tree. 

f(int x, int y)
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2*y == x 

Symbolic Test Generation 
 Depth-first search of computation tree. 

f(int x, int y)
{

  z = 2*x;

  if (z == x)

    if (x > y + 8)

      print(“Hi”)

}
Φ(path):       2y ≠ x 
     Input:    x = 0, y = 1 

x > y + 8 
T F 
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Symbolic Test Generation 
 Depth-first search of computation tree. 

f(int x, int y)
{

  z = 2*x;

  if (z == x)

    if (x > y + 8)

      print(“Hi”)

}

x > y + 8 

2*y == x 

T F 

Φ(path): 2y = x ∧ x ≤ y+8 
     Input:    x = 1, y = 2 
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Symbolic Test Generation 
 Depth-first search of computation tree. 
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Symbolic Test Generation 
 Depth-first search of computation tree. 

f(int x, int y)
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Symbolic Execution for Complexity 
 Naïve Algorithm: 

  Generate every execution on N inputs. 
  Return input for longest execution. 



Symbolic Execution for Complexity 
 Naïve Algorithm: 

N=2: 
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Symbolic Execution for Complexity 
 Naïve Algorithm: 
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Symbolic Execution for Complexity 
 Naïve Algorithm: 

N=2: 
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Worst-case Input: 2 1 
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Symbolic Execution for Complexity 
 Naïve Algorithm: 
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Path Space Explosion 
 Naïve algorithm does not scale. 

 1.6×1025 paths 
 Longest has only 

121 basic blocks 

N=15: 
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 Step 1: From executions on small inputs, 
learn oracle for longest paths. 

Overview of WISE 
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Oracles for Longest Paths 

 Goal: Prune search of computation tree. 
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Branch Policy Oracles 
 Classify each conditional in P: 

  Free: Must explore true or false branch. 
  Biased: When feasible, only explore true 

(resp. false) branch. 
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Example: Searching w/ Branch Policy 

 N insertions into empty sorted list: 

// list with sentinel INT_MAX
insert(list* p, int x) {
   while (x > p->data) {
      p = p->next;
   }
   p->next = new list(p->data, 
                      p->next);
   p->data = x;
} 



Example: Searching w/ Branch Policy 

 N insertions into empty sorted list: 

// list with sentinel INT_MAX
insert(list* p, int x) {
   while (x > p->data) {
      p = p->next;
   }
   p->next = new list(p->data, 
                      p->next);
   p->data = x;
} 

Biased to 
true branch. 
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insert(list, x1);
insert(list, x2);
insert(list, x3);
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 Step 1: From executions on small inputs, 
learn oracle for longest paths. 

 Step 2: For large inputs, only examine 
             paths generated by oracle. 
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Selecting a Branch Policy 
 Find all executions on size-1,…,T inputs. 
 Pick branch policy B that: 

  gives a longest path for each 1,…,T 
  gives fewest # paths on 1,…,T 
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Evaluating the WISE Algorithm 

 Correctness 
  Does WISE find worst-case inputs? 

 Efficiency (Scalability) 
  For large inputs, how well does WISE 

 prune  the search? 



Correctness of WISE 

 Does WISE find worst-case inputs? 

 Recall: 
 Find all executions on size-1,…,T inputs. 
  Pick branch policy B that: 

 (1) gives a longest path for each 1,…,T 
 (2) gives fewest # paths on 1,…,T 

 Will B give longest paths for larger inputs? 



Correctness of WISE: The Theory 

 Yes, if T is large enough. 

 Proposition: For any program P, 
there exists a T* such that: 
  Branch policy B works for 1,..,T* 

         B works for all input sizes. 

 How to find T*?  We don’t know. 
  In benchmarks, 2 ≤ T* ≤ 9. 

€ 

⇒



Evaluating the WISE Algorithm 

 Correctness 
  Does WISE find worst-case inputs? 

 Efficiency (Scalability) 
  For large inputs, how well does WISE 

 prune  the search? 



Experiments: Data Structures 

Benchmark O() # Paths # Paths 
Searched T* 

Sorted List 
Insert 

O(n) n! 1 2 

Heap Insert O(log n) ~ (log n)! 1 2 

Red-Black 
Tree Search 

O(log n) > n! 1 8 

Binary Search 
Tree Insert 

O(n) > n! 1 3 



Experiments: Data Structures 

// binary search tree insert
void insert(tree** t, int x) {
  while (*t != NULL) {
     if (x <= (*t)->data) {
       t = &(*t)->left;
     } else {
       t = &(*t)->right;
     }
  }
  *t = new tree(x, NULL, NULL);
} 



Experiments: Data Structures 

// binary search tree insert
void insert(tree** t, int x) {
  while (*t != NULL) {
     if (x <= (*t)->data) {
       t = &(*t)->left;
     } else {
       t = &(*t)->right;
     }
  }
  *t = new tree(x, NULL, NULL);
} 

Bias to 
true branch. 



Experiments: Data Structures 

 For sorted list, tree, and heap insert: 
  At any conditional comparing a new 

 element to an existing one, the new 
 element should be smaller. 

 For red-black tree search: 
  Search value should be smaller than all 

 tree elements to which it’s compared. 



Experiments: Algorithms 

Benchmark O() # Paths # Paths 
Searched T* 

Insertion Sort O(n2) n! 1 3 

Quicksort O(n2) n! 1 8 

Mergesort O(n log n) n! ~ 2n 7 

Bellman-Ford O(nm) > (2n)n 1 3 

Dijsktra’s O(n2) > 4n 1 3 

TSP O(n!) huge 1 5 



Experiments: Algorithms 

quicksort(int A[], int l, int r) {
  …
  // partition
  for (i = l; i < r; i++) {
    if (A[i] <= pivot) {
      swap(A[i], A[mid++];
    }
  }
  …
} 
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true branch. 



Experiments: Algorithms 

 For Bellman-Ford and Dijkstra’s: 
  In each iteration, every edge should be  

 relaxed when feasible. 

 For Traveling Salesman: 
 The search should never be pruned by the 

heuristic bound. 
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Limitation: Mergesort 

  …
  // merge
  while (i <= lenL && j <= lenR) {
    if (left[i] <= right[j]) 
    {
      A[k++] = left[i++];

    } else {
      A[k++] = right[j++];
    }
  }
  // copy rest of left or right



Limitation: Mergesort 

  …
  // merge
  while (i <= lenL && j <= lenR) {
    if (left[i] <= right[j]) 
    {
      A[k++] = left[i++];

    } else {
      A[k++] = right[j++];
    }
  }
  // copy rest of left or right

Longest paths 
alternate. 
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Related Work 
  Worst-case Execution Time (WCET) 

  For real-time, embedded systems 
  Large body of work 

  Profiling – e.g. gprof [Graham, et al., 1982] 
  Empirical asymptotic complexity 

  [Goldsmith, Aiken, Wilkerson, FSE 07] 

  Static loop bounds 
  Linear ranking functions [Colon, Sipma, TACAS 01] 
  [Gulavani, Gulwani, CAV 08] 
  SPEED [Gulwani, et a., POPL 08] 



Conclusions + Future Work 
  Automated testing typically for correctness 

  Have adapted for performance/complexity 

  Worst-case Inputs from Symbolic Execution 
  Generalizes from runs on small inputs 
  For small functions/components 

 Next: Algorithmic denial-of-service 
  E.g. regular expression matching 
  E.g. NIDS packet matching 



QUESTIONS? 


