
WISE: Automated Test Generation
for Worst-Case Complexity

Jacob Burnim

Sudeep Juvekar
Koushik Sen

Performance-Directed Testing
 Automated tested has focused on

correctness bugs.

 Goal: Apply to software performance.
  Find performance bottlenecks.
  Security: Algorithmic denial-of-service.

 Today: Computational complexity testing.
  How slow is an operation in the worst case?
  Does a function meet its algorithmic

 complexity spec?

Performance-Directed Testing

 Example: Performance bug in Jar
  Reported by Sun on May 15, 2009
  update method O(N2) instead of O(N)
  O(N) look-up on every file, rather than O(1)
  wasted 75% of run-time building rt.jar

Goal of WISE
 Worst-case Inputs from Symbolic Execution

Input

InsertionSort()

Input Size: N

// insertion sort
for(i = 0 .. N-1)
for(j = i .. 1)
 if (A[j] < A[j-1])
 swap(A[j], A[j-1])
 else
 break

Size: N

Goal of WISE
 Worst-case Inputs from Symbolic Execution

Input Output

InsertionSort()

Input Size: N

1: 1

2: 2 1

3: 3 2 1

N: N … 2 1

// insertion sort
for(i = 0 .. N-1)
for(j = i .. 1)
 if (A[j] < A[j-1])
 swap(A[j], A[j-1])
 else
 break

WISE

…

Size: N

Worst-Cast Empirical Complexity

0

100

200

300

0 3 6 9 12 15

#
 B

as
ic

 B
lo

ck
s

Input Size

5 4 3 2 1

Worst-Cast Empirical Complexity

0

100

200

300

0 3 6 9 12 15

#
 B

as
ic

 B
lo

ck
s

Input Size

10 9 … 2 1

Worst-Cast Empirical Complexity

0

100

200

300

0 3 6 9 12 15

#
 B

as
ic

 B
lo

ck
s

Input Size

15 14 … 2 1

Worst-Cast Empirical Complexity

0

100

200

300

0 3 6 9 12 15

#
 B

as
ic

 B
lo

ck
s

Input Size

N2 + N - 1
basic blocks.

Overview of WISE

 Uses symbolic test generation to explore
possible program executions.
  Widely used in automated software testing.

(DART, CUTE, SAGE, EXE, KLEE, JPF, …)

 Key Idea:
 Learn from executions on small inputs.
  In Quicksort, pivot should be smaller than

all elements to which it’s compared.

Outline

 Motivation + Goal of WISE

 Background: Symbolic Test Generation

 Naïve Algorithm for Finding Complexity

 WISE Algorithm

  Evaluation

 Conclusions + Future Work

Symbolic Test Generation
 Goal: A test input for every program path.

f(int x, int y)
{

 z = 2*x;

 if (z == x)

 if (x > y + 8)

 print(“Hi”)

}

x > y + 8

2*y == x

T F

Computation Tree

T F

Symbolic Test Generation
 Depth-first search of computation tree.

f(int x, int y)
{

 z = 2*x;

 if (z == x)

 if (x > y + 8)

 print(“Hi”)

}

x > y + 8

2*y == x

T F

Computation Tree

T F

2*y == x

Symbolic Test Generation
 Depth-first search of computation tree.

f(int x, int y)
{

 z = 2*x;

 if (z == x)

 if (x > y + 8)

 print(“Hi”)

}
Φ(path): 2y ≠ x
 Input: x = 0, y = 1

x > y + 8
T F

T F

x > y + 8

2*y == x

Symbolic Test Generation
 Depth-first search of computation tree.

f(int x, int y)
{

 z = 2*x;

 if (z == x)

 if (x > y + 8)

 print(“Hi”)

}

x > y + 8

2*y == x

T F

Φ(path): 2y = x ∧ x ≤ y+8
 Input: x = 1, y = 2

T F

x > y + 8

2*y == x

Symbolic Test Generation
 Depth-first search of computation tree.

f(int x, int y)
{

 z = 2*x;

 if (z == x)

 if (x > y + 8)

 print(“Hi”)

}

x > y + 8

2*y == x

T F

Φ(path): 2y = x ∧ x > y+8
 Input: x = -10, y = -20

T F

x > y + 8

2*y == x

Symbolic Test Generation
 Depth-first search of computation tree.

f(int x, int y)
{

 z = 2*x;

 if (z == x)

 if (x > y + 8)

 print(“Hi”)

}

x > y + 8

2*y == x

T F

Φ(path): 2y = x ∧ x > y+8
 Input: x = -10, y = -20

T F

x > y + 8

2*y == x

Outline

 Motivation + Goal of WISE

  Background: Symbolic Test Generation

 Naïve Algorithm for Finding Complexity

 WISE Algorithm

  Evaluation

 Conclusions + Future Work

Symbolic Execution for Complexity
 Naïve Algorithm:

  Generate every execution on N inputs.
  Return input for longest execution.

Symbolic Execution for Complexity
 Naïve Algorithm:

N=2:
F

F T

F

Symbolic Execution for Complexity
 Naïve Algorithm:

N=2:
F

F T

F

Longest Execution (4 basic blocks)

Symbolic Execution for Complexity
 Naïve Algorithm:

N=2:
F

F T

F

Worst-case Input: 2 1

Symbolic Execution for Complexity
 Naïve Algorithm:

N=3:

F

F T

F F T

T F

F

F T

T F

F

Symbolic Execution for Complexity
 Naïve Algorithm:

N=3:

F

F T

F F T

T F

F

F T

T F

F
Longest Execution
(7 basic blocks)

Symbolic Execution for Complexity
 Naïve Algorithm:

N=3:

F

F T

F F T

T F

F

F T

T F

F
Worst-Case Input:

3 2 1

Symbolic Execution for Complexity
 Naïve Algorithm:

N=3:

F

F T

F F T

T F

F

F T

T F

F
Worst-Case Input:

3 2 1

Path Space Explosion
 Naïve algorithm does not scale.

 1.6×1025 paths
 Longest has only

121 basic blocks

N=15:

Path Space Explosion
 Naïve algorithm does not scale.

 1.6×1025 paths
 Longest has only

121 basic blocks

N=15:

Outline

 Motivation + Goal of WISE

  Background: Symbolic Test Generation

 Naïve Algorithm for Finding Complexity

 WISE Algorithm

  Evaluation

 Conclusions + Future Work

 Step 1: From executions on small inputs,
learn oracle for longest paths.

Overview of WISE

 Step 1: From executions on small inputs,
learn oracle for longest paths.

Overview of WISE

F

N=1

F

F T

F
N=2 N=3

 Step 1: From executions on small inputs,
learn oracle for longest paths.

Overview of WISE

F
F

F T

F
N=1 N=2 N=3

 Step 1: From executions on small inputs,
learn oracle for longest paths.

 Step 2: For large inputs, only examine
 paths generated by oracle.

Overview of WISE

F

N=1

F

F T

F
N=2 N=3

 Step 1: From executions on small inputs,
learn oracle for longest paths.

 Step 2: For large inputs, only examine
 paths generated by oracle.

Overview of WISE

F

N=1

N=15

F

F T

F
N=2 N=3

 Step 1: From executions on small inputs,
learn oracle for longest paths.

 Step 2: For large inputs, only examine
 paths generated by oracle.

Overview of WISE

F

N=1

N=15

F

F T

F
N=2 N=3

 Step 1: From executions on small inputs,
learn oracle for longest paths.

 Step 2: For large inputs, only examine
 paths generated by oracle.

Overview of WISE

F

N=1

N=15

F

F T

F
N=2 N=3

Oracles for Longest Paths

 Goal: Prune search of computation tree.

F

F
T

F

F T

T F

F

F T

T F

F

Oracles for Longest Paths

 Goal: Prune search of computation tree.

F

F
T

F

F T

T F

F

F T

T F

F

Branch Policy Oracles
 Classify each conditional in P:

  Free: Must explore true or false branch.
  Biased: When feasible, only explore true

(resp. false) branch.

Branch Policy Oracles
 Each conditional in P classified as:

F T

F

Free: Biased:

Branch Policy Oracles
 Each conditional in P classified as:

F T

F

Free: Biased:

Branch Policy Oracles
 Each conditional in P classified as:

F T

F

Free: Biased (true):

F T

F

Branch Policy Oracles
 Each conditional in P classified as:

F T

F

Free: Biased (true):

F T

F

Example: Searching w/ Branch Policy

 N insertions into empty sorted list:

// list with sentinel INT_MAX
insert(list* p, int x) {
 while (x > p->data) {
 p = p->next;
 }
 p->next = new list(p->data, 
 p->next);
 p->data = x;
}

Example: Searching w/ Branch Policy

 N insertions into empty sorted list:

// list with sentinel INT_MAX
insert(list* p, int x) {
 while (x > p->data) {
 p = p->next;
 }
 p->next = new list(p->data, 
 p->next);
 p->data = x;
}

Biased to
true branch.

Example: Searching w/ Branch Policy

F

F

T

F

F T

T F

F

F T

T F

F

∞

sorted list:

insert(list, x1);
insert(list, x2);
insert(list, x3);

Example: Searching w/ Branch Policy

F

F

T

F

F T

T F

F

F T

T F

F

∞

x: x1

p:

sorted list:

while (x > p->data) {
 p = p->next;
}

x1 > ∞

Example: Searching w/ Branch Policy

F

F

T

F

F T

T F

F

F T

T F

F

x1 ∞

x: x2

p:

sorted list:

while (x > p->data) {
 p = p->next;
}

x2 > x1

Example: Searching w/ Branch Policy

F

F

T

F

F T

T F

F

F T

T F

F

x1 ∞

x: x2

p:

sorted list:

while (x > p->data) {
 p = p->next;
}

x2 > ∞

Example: Searching w/ Branch Policy

F

F

T

F

F T

T F

F

F T

T F

F

x1 ∞ x2

x: x3

p:

sorted list:

while (x > p->data) {
 p = p->next;
}

x3 > x1

Example: Searching w/ Branch Policy

F

F

T

F

F T

T F

F

F T

T F

F

x1 ∞ x2

x: x3

p:

sorted list:

while (x > p->data) {
 p = p->next;
}

x3 > x2

Example: Searching w/ Branch Policy

F

F

T

F

F T

T F

F

F T

T F

F

x1 ∞ x2

x: x3

p:

sorted list:

while (x > p->data) {
 p = p->next;
}

x3 > ∞

Example: Searching w/ Branch Policy

F

F

T

F

F T

T F

F

F T

T F

F

Example: Searching w/ Branch Policy

F

F

T

F

F T

T F

F

F T

T F

F

 Step 1: From executions on small inputs,
learn oracle for longest paths.

 Step 2: For large inputs, only examine
 paths generated by oracle.

Overview of WISE

F

N=1

N=15

F

F T

F
N=2 N=3

 Step 1: From executions on small inputs,
learn oracle for longest paths.

 Step 2: For large inputs, only examine
 paths generated by oracle.

Overview of WISE

F

N=1

N=15

F

F T

F
N=2 N=3

Selecting a Branch Policy
 Find all executions on size-1,…,T inputs.
 Pick branch policy B that:

  gives a longest path for each 1,…,T
  gives fewest # paths on 1,…,T

Selecting a Branch Policy
 Pick branch policy B that:

  gives a longest path for each 1,…,T
  gives fewest # paths on 1,…,T

Policy:

?

N=1 N=2 N=3

Selecting a Branch Policy
 Pick branch policy B that:

  gives a longest path for each 1,…,T
  gives fewest # paths on 1,…,T

F T

Policy:
N=1 N=2 N=3

Selecting a Branch Policy
 Pick branch policy B that:

  gives a longest path for each 1,…,T
  gives fewest # paths on 1,…,T

F T

Policy:
N=1 N=2 N=3

Selecting a Branch Policy
 Pick branch policy B that:

  gives a longest path for each 1,…,T
  gives fewest # paths on 1,…,T

F T

N=1 N=2 N=3
Policy:

Selecting a Branch Policy
 Pick branch policy B that:

  gives a longest path for each 1,…,T
  gives fewest # paths on 1,…,T

N=1 N=2 N=3
Policy:

F T

Selecting a Branch Policy
 Pick branch policy B that:

  gives a longest path for each 1,…,T
  gives fewest # paths on 1,…,T

N=1 N=2 N=3
Policy:

F T

Selecting a Branch Policy
 Pick branch policy B that:

  gives a longest path for each 1,…,T
  gives fewest # paths on 1,…,T

N=1 N=2 N=3
Policy:

F T

Outline

 Motivation + Goal of WISE

  Background: Symbolic Test Generation

 Naïve Algorithm for Finding Complexity

 WISE Algorithm

 Evaluation

 Conclusions + Future Work

Evaluating the WISE Algorithm

 Correctness
  Does WISE find worst-case inputs?

 Efficiency (Scalability)
  For large inputs, how well does WISE

 prune the search?

Correctness of WISE

 Does WISE find worst-case inputs?

 Recall:
 Find all executions on size-1,…,T inputs.
  Pick branch policy B that:

 (1) gives a longest path for each 1,…,T
 (2) gives fewest # paths on 1,…,T

 Will B give longest paths for larger inputs?

Correctness of WISE: The Theory

 Yes, if T is large enough.

 Proposition: For any program P,
there exists a T* such that:
  Branch policy B works for 1,..,T*

 B works for all input sizes.

 How to find T*? We don’t know.
  In benchmarks, 2 ≤ T* ≤ 9.

€

⇒

Evaluating the WISE Algorithm

 Correctness
  Does WISE find worst-case inputs?

 Efficiency (Scalability)
  For large inputs, how well does WISE

 prune the search?

Experiments: Data Structures

Benchmark O() # Paths # Paths
Searched T*

Sorted List
Insert

O(n) n! 1 2

Heap Insert O(log n) ~ (log n)! 1 2

Red-Black
Tree Search

O(log n) > n! 1 8

Binary Search
Tree Insert

O(n) > n! 1 3

Experiments: Data Structures

// binary search tree insert
void insert(tree** t, int x) {
 while (*t != NULL) {
 if (x <= (*t)->data) {
 t = &(*t)->left;
 } else {
 t = &(*t)->right;
 }
 }
 *t = new tree(x, NULL, NULL);
}

Experiments: Data Structures

// binary search tree insert
void insert(tree** t, int x) {
 while (*t != NULL) {
 if (x <= (*t)->data) {
 t = &(*t)->left;
 } else {
 t = &(*t)->right;
 }
 }
 *t = new tree(x, NULL, NULL);
}

Bias to
true branch.

Experiments: Data Structures

 For sorted list, tree, and heap insert:
  At any conditional comparing a new

 element to an existing one, the new
 element should be smaller.

 For red-black tree search:
  Search value should be smaller than all

 tree elements to which it’s compared.

Experiments: Algorithms

Benchmark O() # Paths # Paths
Searched T*

Insertion Sort O(n2) n! 1 3

Quicksort O(n2) n! 1 8

Mergesort O(n log n) n! ~ 2n 7

Bellman-Ford O(nm) > (2n)n 1 3

Dijsktra’s O(n2) > 4n 1 3

TSP O(n!) huge 1 5

Experiments: Algorithms

quicksort(int A[], int l, int r) {
 …
 // partition
 for (i = l; i < r; i++) {
 if (A[i] <= pivot) {
 swap(A[i], A[mid++];
 }
 }
 …
}

Experiments: Algorithms

quicksort(int A[], int l, int r) {
 …
 // partition
 for (i = l; i < r; i++) {
 if (A[i] <= pivot) {
 swap(A[i], A[mid++];
 }
 }
 …
}

Bias to
true branch.

Experiments: Algorithms

 For Bellman-Ford and Dijkstra’s:
  In each iteration, every edge should be

 relaxed when feasible.

 For Traveling Salesman:
 The search should never be pruned by the

heuristic bound.

Experiments: Algorithms

Benchmark O() # Paths # Paths
Searched T*

Insertion Sort O(n2) n! 1 3

Quicksort O(n2) n! 1 8

Mergesort O(n log n) n! ~ 2n 7

Bellman-Ford O(nm) > (2n)n 1 3

Dijsktra’s O(n2) > 4n 1 3

TSP O(n!) huge 1 5

Limitation: Mergesort

 …
 // merge
 while (i <= lenL && j <= lenR) {
 if (left[i] <= right[j]) 
 {
 A[k++] = left[i++];

 } else {
 A[k++] = right[j++];
 }
 }
 // copy rest of left or right

Limitation: Mergesort

 …
 // merge
 while (i <= lenL && j <= lenR) {
 if (left[i] <= right[j]) 
 {
 A[k++] = left[i++];

 } else {
 A[k++] = right[j++];
 }
 }
 // copy rest of left or right

Longest paths
alternate.

Outline

 Motivation + Goal of WISE

  Background: Symbolic Test Generation

 Naïve Algorithm for Finding Complexity

 WISE Algorithm

  Evaluation

 Conclusions + Future Work

Related Work
  Worst-case Execution Time (WCET)

  For real-time, embedded systems
  Large body of work

  Profiling – e.g. gprof [Graham, et al., 1982]
  Empirical asymptotic complexity

  [Goldsmith, Aiken, Wilkerson, FSE 07]

  Static loop bounds
  Linear ranking functions [Colon, Sipma, TACAS 01]
  [Gulavani, Gulwani, CAV 08]
  SPEED [Gulwani, et a., POPL 08]

Conclusions + Future Work
  Automated testing typically for correctness

  Have adapted for performance/complexity

  Worst-case Inputs from Symbolic Execution
  Generalizes from runs on small inputs
  For small functions/components

 Next: Algorithmic denial-of-service
  E.g. regular expression matching
  E.g. NIDS packet matching

QUESTIONS?

