

Motivation

  Key: Easy and worthwhile to specify
deterministic behavior of parallel programs

  Parallel programming is difficult

  Culprit: Non-determinism
•  Interleaving of parallel threads.

  Often, non-determinism is internal
•  Same input => semantically same output
•  Parallel code is outwardly sequential

Motivation

  Goal: Separately specify/check
parallelism and functional correctness.
•  Show parallelism is deterministic.
•  Reason about correctness sequentially.
•  Decomposes correctness proof (or testing)!

  Example:
•  Write Cilk program and prove (or test)

sequential correctness.
•  Add parallelism, answers should not change

Determinism specification: A sweet spot?
•  Lightweight, but precise.

Motivation
  How to specify correctness of parallelism?

Implicit:
No sources of

non-determinism
(no data races)

Explicit:

Full functional
correctness.

Outline

  Motivation

  Deterministic Specification

  Experimental Evaluation

  Related Work

  Future Work + Conclusions

Deterministic Specification

  Goal: Specify deterministic behavior.
•  Same initial parameters => same image.
•  Non-determinism is internal.

 // Parallel fractal render!
 mandelbrot(params, img);!

Deterministic Specification

  Specifies: Two runs from same initial
program state have same result state.

deterministic {!
 // Parallel fractal render!
 mandelbrot(params, img);!
}!

€

∀ s0
m⎯ → ⎯ s1 , s0

m⎯ → ⎯ s1ʹ′ : s1 = s1ʹ′

double A[][], b[], x[];!
...!
deterministic {!
 // Solve A*x = b in parallel !
 lufact_solve(A, b, x);!
}!

Deterministic Specification

  Too restrictive – different schedules may
give slightly different floating-point results.

set t = new RedBlackTreeSet();!
deterministic {!
 t.add(3) || t.add(5);!
}!

Deterministic Specification

  Too restrictive – internal structure of set
may differ depending on order of adds. !

deterministic {!
 // Parallel branch-and-bound!
 Tree t = min_phylo_tree(data);!
}!

Deterministic Specification

  Too restrictive – search can correctly
return any tree with optimal cost.

Semantic Determinism

  Too strict to require every interleaving to
give exact same program state:

 deterministic {!
 P!
 }!

€

∀ s0
P⎯ → ⎯ s1 , s0

P⎯ → ⎯ s1ʹ′ : s1 = s1ʹ′

Semantic Determinism

  Too strict to require every interleaving to
give exact same program state:

 deterministic {!
 P!
 }!

€

∀ s0
P⎯ → ⎯ s1 , s0

P⎯ → ⎯ s1ʹ′ : s1 = s1ʹ′

Predicate!
Should be

user-defined.

Semantic Determinism

  Too strict to require every interleaving to
give exact same program state:

  Specifies: Final states are equivalent.

 deterministic {!
 P!
 } assert Post(s1,s1’)!

€

∀ s0
P⎯ → ⎯ s1 , s0

P⎯ → ⎯ s1ʹ′ : Post(s1, s1ʹ′)

double A[][], b[], x[];!
...!
deterministic {!
 // Solve A*x = b in parallel !
 lufact_solve(A, b, x);!
} assert (|x – x’| < ε)!

Semantic Determinism

“Bridge” predicate

  Resulting sets are semantically equal.

set t = new RedBlackTreeSet();!
deterministic {!
 t.add(3) || t.add(5);!
} assert (t.equals(t’))!

Semantic Determinism

deterministic {!
 // Parallel branch-and-bound!
 Tree t = min_phylo_tree(data);!
} assert (t.cost == t’.cost())!

Semantic Determinism

  Too strict – initial states must be identical
•  Not compositional.

Preconditions for Determinism
 set t = …!
 deterministic {!
 t.add(3) || t.add(5);!
 } assert (t.equals(t’))!
 …!
 deterministic {!
 t.add(4) || t.add(6);!
 } assert (t.equals(t’))!

Preconditions for Determinism
  Too strict to require identical initial states:

deterministic {!
 P!
} assert Post(s1,s1’)!

€

∀ s0
P⎯ → ⎯ s1 , s0

P⎯ → ⎯ s1ʹ′ : Post(s1, s1ʹ′)

Preconditions for Determinism
  Too strict to require identical initial states:

deterministic assume (s0 = s0’) {!
 P!
} assert Post(s1,s1’)!

€

∀ s0
P⎯ → ⎯ s1 , s0ʹ′

P⎯ → ⎯ s1ʹ′ :

€

s0 = s0ʹ′ ⇒ Post(s1, s1ʹ′)

Preconditions for Determinism
  Too strict to require identical initial states:

deterministic assume (s0 = s0’) {!
 P!
} assert Post(s1,s1’)!

€

∀ s0
P⎯ → ⎯ s1 , s0ʹ′

P⎯ → ⎯ s1ʹ′ :

€

s0 = s0ʹ′ ⇒ Post(s1, s1ʹ′)

Predicate!
Should be

user-defined.

Predicate!
Should be

user-defined.

Preconditions for Determinism
  Too strict to require identical initial states:

  Specifies:

deterministic assume Pre(s0,s0’) {!
 P!
} assert Post(s1,s1’)!

€

∀ s0
P⎯ → ⎯ s1 , s0ʹ′

P⎯ → ⎯ s1ʹ′ :

€

Pre(s0, s0ʹ′) ⇒ Post(s1, s1ʹ′)

deterministic assume Pre(s0,s0’) {!
 P!
} assert Post(s1,s1’)!

Bridge predicates/assertions

“Bridge”
predicate

“Bridge”
assertion

set t = ...!
deterministic!
assume (t.equals(t’)) {!
 t.add(4) || t.add(6);!
} assert (t.equals(t’))!

  Specifies: Semantically equal sets yield
semantically equal sets.

Preconditions for Determinism

Checking Determinism

  Run P on some number of schedules.

  For every pair and of
executions of P:

deterministic assume Pre(s0,s0’) {!
 P!
} assert Post(s1,s1’)!

€

s0 → s1

€

s0
ʹ′ → s1

ʹ′

€

Pre(s0,s0
ʹ′) ⇒ Post(s1,s1

ʹ′)

Outline

  Motivation

  Deterministic Specification

  Experimental Evaluation
•  Ease of Use
•  Effectiveness in Finding Bugs

  Related Work

  Future Work + Conclusions

Ease of Asserting Determinism

  Implemented a deterministic assertion
library for Java.

  Manually added deterministic assertions
to 13 Java benchmarks with 200 – 4k LoC

  Typically ~10 minutes per benchmark
•  Functional correctness very difficult.

Deterministic Assertion Library
  Implemented assertion library for Java:

  Records set to check:
 eq.apply(set0,set0’) => eq.apply(set,set’)

Predicate eq = new Equals();!
Deterministic.open();!
Deterministic.assume(set, eq);!
 ...!
Deterministic.assert(set, eq);!
Deterministic.close();!

Ease of Use: Example
Deterministic.open();!
Predicate eq = new Equals();!
Deterministic.assume(width, eq);!
… (9 parameters total) …!
Deterministic.assume(gamma, eq);!

// Compute fractal in threads!
int matrix[][] = …;!

Deterministic.assert(matrix, eq);!
Deterministic.close();!

Effectiveness in Finding Bugs

  13 Java benchmarks of 200 – 4k LoC

  Ran benchmarks on 100-1000 schedules
•  Schedules with data races and other

“interesting” interleavings (active testing)

  For every pair of executions of
deterministic Pre { P } Post:

check that:

€

s0
P⎯ → ⎯ s1 , s0ʹ′

P⎯ → ⎯ s1ʹ′

€

Pre(s0, s0ʹ′) ⇒ Post(s1, s1ʹ′)

Experiments: Java Grande Forum

Benchmark LoC Data Races
Found | Violations

High-Level
Races

Found | Violations

sor 300 2 0 0 0

moldyn 1.3k 2 0 0 0

lufact 1.5k 1 0 0 0

raytracer 1.9k 3 1 0 0

montecarlo 3.6k 1 0 2 0

Experiments: Parallel Java Lib

Benchmark LoC Data Races
Found | Violations

High-Level
Races

Found | Violations

pi 150 9 0 1+ 1

keysearch3 200 3 0 0+ 0

mandelbrot 250 9 0 0+ 0

phylogeny 4.4k 4 0 0+ 0

tsp* 700 6 0 2 0

Experimental Evaluation

  Across 13 benchmarks:

  Found 40 data races.
•  1 violates deterministic assertions.

Experimental Evaluation

  Across 13 benchmarks:

  Found 40 data races.
•  1 violates deterministic assertions.

  Found many “interesting” interleavings
(non-atomic methods, lock races, etc.)
•  1 violates deterministic assertions.

Determinism Violation

  Pair of calls to nextDouble() must
be atomic.

deterministic {!
 // N trials in parallel.!
 foreach (n = 0; n < N; n++) {!
 x = Random.nextDouble();!
 y = Random.nextDouble();!
 …!
 }!
} assert (|pi - pi’| < 1e-10)!

Outline

  Motivation

  Deterministic Specification

  Experimental Evaluation

  Related Work

  Future Work + Conclusions

Determinism vs. Atomicity
  Internal vs. external parallelism/non-determinism

•  Complementary notions

Atomic
Deterministic

“Closed program” “Open program”

Related Work: SingleTrack

  [Fruend, Flanagan, ESOP09]

  Dynamic determinism checker.
•  Treats as atomicity with internal parallelism.

  Communication + results must be
identical for every schedule.

Related Work: DPJ

  Deterministic Parallel Java
[Bocchino, Adve, Adve, Snir, HotPar 09]

  Deterministic by default.
•  Enforced by static effect types.

  Bit-wise identical results for all schedules.

  “Safe” non-determinism quarantined
 in libraries.

Outline

  Motivation

  Deterministic Specification

  Experimental Evaluation

  Related Work

  Future Work + Conclusions

Verifying Determinism

  Verify determinism
of each piece.

  No need to consider
cross product of all
interleavings.

P

P

P

P

P

P

Verifying Determinism

  Compositional reasoning for determinism?

P

Q

Q

Q

Q

Q

Q

P P

Conclusions

  “Bridge” predicates and assertions
•  Simple to assert natural determinism
•  Semantic, user-specified determinism

  Can distinguish harmful from benign
data races, non-atomic methods, etc.

  Can we prove/verify determinism?
•  Enable us to prove correctness sequentially?

