Asserting and Checking
Determinism
for Parallel Programs

Jacob Burnim
Koushik Sen
University of California, Berkeley

Motivation

Key: Easy and worthwhile to specify
deterministic behavior of parallel programs

Parallel programming is difficult

Culprit: Non-determinism
 Interleaving of parallel threads.

Often, non-determinism is internal
« Same input => semantically same output
« Parallel code is outwardly sequential

Motivation

Goal: Separately specify/check
parallelism and functional correctness.

« Show parallelism is deterministic.

* Reason about correctness sequentially.
 Decomposes correctness proof (or testing)!

Example:

* Write Cilk program and prove (or test)
sequential correctness.

* Add parallelism, answers should not change

Motivation

= How to specify correctness of parallelism?

U
pias —

Implicit:

No sources of
non-determinism

K(no data races) Y

.

Explicit:

Full functional
correctness.

/

-~

o

* Lightweight, but precise.

~

Determinism specification: A sweet spot?

_/

Outline

Motivation
Deterministic Specification

Experimental Evaluation
Related Work

Future Work + Conclusions

Deterministic Specification

/

_

[/ Parallel fractal render
mandel br ot (parans, 1 ng);

\

/

= Goal: Specify deterministic behavior.
* Same Initial parameters => same image.
* Non-determinism is internal.

Deterministic Specification

4 N

determnistic {
[/ Parallel fractal render
mandel br ot (parans, 1 ng);

J Y

= Specifies: Two runs from same initial
program state have same result state.

Vg——S, §— S :5=5

Deterministic Specification

/double Al1l], b[], X[1]; O

determnistic {
[/ Solve A*X = b i n parall el
| uf act _sol ve(A, b, X);

\J /

= Too restrictive — different schedules may
give slightly different floating-point results.

Deterministic Specification

-~

set t = new RedBl ackTreeSet () ;
determnistic {
t.add(3) || t.add(5);

N

~

/

= Too restrictive — internal structure of set

may differ depending on order of adds.

Deterministic Specification

determ ni stic {
[/ Parallel branch-and-bound
Treet = mn_phylo tree(data)

U

~

/

= Too restrictive — search can correctly
return any tree with optimal cost.

Semantic Determinism

= Too strict to require every interleaving to
give exact same program state:

4 o ™
determnistic {

P

J

P

Vg——s, $——5:s5=5

Semantic Determinism

= Too strict to require every interleaving to
give exact same program state:

-

determnistic {

1 Predicate!
- Should be

user-defined.

Semantic Determinism

= Too strict to require every interleaving to
give exact same program state:

4 o ™
determnistic {

P
} assert Post(s,, S;)

_ J
= Specifies: Final states are equivalent.

Vg——s,5——9 : Posti(s,)

Semantic Determinism

/double Al1l], b[], X[1]; \

determnistic {
[/ Solve A*X = Db 1 n parall el
| uf act _sol ve(A, b, X);

\}assert (| x — x| < §) /

“‘Bridge” predicate

Semantic Determinism

a N

set t = new RedBl ackTreeSet () ;
determ ni stic {
t.add(3) || t.add(5);
assert (t.equals(t’))

}
o /

= Resulting sets are semantically equal.

Semantic Determinism

/

determnistic {

} assert (t.cost

[/ Parallel branch-and-bound
Tree t = mn_phylo tree(data);

== t’.cost())

\

Preconditions for Determinism

set t = ... N\

determnistic {

t.add(3) || t.add(5);
} assert (t.equals(t’))

determnistic {
t.add(4) || t.add(6);

\} assert (t.equals(t’))’ /

= Too strict — initial states must be identical
* Not compositional.

Preconditions for Determinism

= Too strict to require identical initial states:

-~

o A
determnistic {
P
\} assert Post(s,, S;) y

P

VS S

~— 5’ 1 Post(s, §')

Preconditions for Determinism

= Too strict to require identical initial states:

-
determ nistic assune (s, = Sy’) {
P

\} assert Post(s,, S;)

P /

Vg——s, 8§ —9':
$=% = Posi(s, s)

Preconditions for Determinism

= Too strict to require identical initial states:

4 o A
determ ni stic assune (s, = sy’) {
P
k} assert Post(s,,S;)

Predicate!
Should be
user-defined.

Preconditions for Determinism

= Too strict to require identical initial states:

-~

determ ni stic assune Pre(s, S,) {

P

\} assert Post(s,, S;)

J

= Specifies:

Vs

P /

—98, & — 9
Pre(s,) = Posi(s, §)

Bridge predicates/assertions

-

\} assert Post(s;, S;)

determ ni stic assune Pre(sg S,) {
P

~

“Bridge”

| predicate
“Bridge”

assertion

Preconditions for Determinism

/Set t = ... O
determnistic
assune (t.equals(t’)) {
t.add(4) || t.add(6);
Q assert (t.equals(t’)) W,

= Specifies: Semantically equal sets yield
semantically equal sets.

Checking Determinism

-~
determnistic assune Pre(Sgy Sy) {

P
\} assert Post(s,,s;)

J

= Run P on some number of schedules.

= Forevery pair § — S and SO' — S_.L’ of
executions of P:

Pre(s,,s,) = Post(s,s')

Outline

Motivation
Deterministic Specification

Experimental Evaluation
- Ease of Use
- Effectiveness in Finding Bugs

Related Work

Future Work + Conclusions

Ease of Asserting Determinism

* Implemented a deterministic assertion
library for Java.

= Manually added deterministic assertions
to 13 Java benchmarks with 200 — 4k LoC

= Typically ~10 minutes per benchmark
* Functional correctness very difficult.

Deterministic Assertion Library

= Implemented assertion library for Java:

/Dr edi cate eq = new Equal s(); \
Det er m ni stic. open();
Det er mi ni stic.assune(set, eq);

Determ ni stic. assert(set, eq);

KDeterm’ ni stic.close(); /

= Records set to check:
eq.apply(set,,set,’) => eq.apply(set,set’)

Ease of Use: Example

Determ ni stic.open();
Predi cate eq = new Equal s();

Determ ni stic.assune(wdth, eq);
...(9 paraneters total)

Det erm ni sti c. assune(gamm, e€eq);

[/ Conpute fractal 1 n threads
Int matri x[][] =

Ilr

Determ ni stic.assert(matri x, eq);
Det ermi ni sti c. cl ose();

Effectiveness in Finding Bugs

= 13 Java benchmarks of 200 — 4k LoC

= Ran benchmarks on 100-1000 schedules

* Schedules with data races and other
“Interesting” interleavings (active testing)

For every pair of executions of
determnistic Pre { P} Post:

SO P >S“ Sor P >%/
check that: Pre(s,,) = Posi(s, ')

Experiments: Java Grande Forum

Data Races High-Level

Benchmark | LoC Races
Found | Violations

Found | Violations

sor 300 2 0 0 0
moldyn 1.3k 2 0 0 0
lufact 1.5k 1 0 0 0
raytracer 1.9k 3 1 0 0
montecarlo 3.6k 1 0 2 0

Experiments: Parallel Java Lib

Data Races High-Level

Benchmark | LoC Races
Found | Violations

Found | Violations

o] 150 9 0 1+ 1
keysearch3 200 3 0 0+ 0
mandelbrot 250 9 0 0+ 0
phylogeny 4.4k 4 0 0+ 0

tsp* 700 6 0 2 0

Experimental Evaluation

= Across 13 benchmarks:

= Found 40 data races.
1 violates deterministic assertions.

Experimental Evaluation

= Across 13 benchmarks:

= Found 40 data races.
1 violates deterministic assertions.

= Found many “interesting” interleavings
(non-atomic methods, lock races, etc.)

1 violates deterministic assertions.

Determinism Violation

//aeterninistic { \\\

[/ Ntrials in parallel.
foreach (n = 0; n < N n++) {
X Random next Doubl e() ;

y Random next Doubl e() ;

}
\gtassert (|pi - pi’'| < le-10) 4///

= Pair of calls to next Doubl e() must
be atomic.

Outline

Motivation
Deterministic Specification

Experimental Evaluation
Related Work

Future Work + Conclusions

Determinism vs. Atomicity

= [nternal vs. external parallelism/non-determinism
Complementary notions

Deterministic

-

“Closed program™ “Open program”

Related Work: SingleTrack

= [Fruend, Flanagan, ESOPQ09]

= Dynamic determinism checker.
* Treats as atomicity with internal parallelism.

= Communication + results must be
identical for every schedule.

Related Work: DPJ

Deterministic Parallel Java
[Bocchino, Adve, Adve, Snir, HotPar 09]

Deterministic by default.
« Enforced by static effect types.

Bit-wise identical results for all schedules.

“Safe” non-determinism quarantined
In libraries.

Outline

Motivation
Deterministic Specification
Experimental Evaluation

Related Work

Future Work + Conclusions

Verifying Determinism

= Verify determinism P
of each piece.
= No need to consider =

cross product of all
interleavings.

Verifying Determinism

= Compositional reasoning for determinism?

Conclusions

= “Bridge” predicates and assertions
« Simple to assert natural determinism
« Semantic, user-specified determinism

= Can distinguish harmful from benign
data races, non-atomic methods, etc.

= Can we prove/verify determinism?
* Enable us to prove correctness sequentially?

Any Questions?

email journim@cs.berkeley.edu

